
 RTO-MP-048
AC/323(IST)TP/7

NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE

RTO MEETING PROCEEDINGS 48

Commercial Off-the-Shelf Products in
Defence Applications “The Ruthless Pursuit
of COTS”
(l’Utilisation des produits vendus sur étagères dans les
applications militaires de défense “l’Exploitation sans merci
des produits commerciaux”)

Papers presented at the Information Systems Technology Panel (IST) Symposium held in Brussels,
Belgium, 3-5 April 2000.

Published December 2000

Distribution and Availability on Back Cover

R
T

O
-M

P
-0

4
8

Form SF298 Citation Data

Report Date
("DD MON YYYY")
01122000

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY")

Title and Subtitle
Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"

Contract or Grant Number

Program Element Number

Authors Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research and Technology Organization North Atlantic Treaty
Organization BP25, 7 rue Ancelle, F-92201 Neuilly-sur-Seine,
Cedex, France

Performing Organization
Number(s)

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym

Monitoring Agency Report
Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Document Classification
unclassified

Classification of SF298
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
unlimited

Number of Pages
214

 RTO-MP-048
AC/323(IST)TP/7

NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25, 7 RUE ANCELLE, F-92201 NEUILLY-SUR-SEINE CEDEX, FRANCE

RTO MEETING PROCEEDINGS 48

Commercial Off-the-Shelf Products in Defence
Applications “The Ruthless Pursuit of COTS”
(l’Utilisation des produits vendus sur étagères dans les applications militaires
de défense “l’Exploitation sans merci des produits commerciaux”)

Papers presented at the Information Systems Technology Panel (IST) Symposium held in
Brussels, Belgium, 3-5 April 2000.

The Research and Technology
Organization (RTO) of NATO

RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote
cooperative research and information exchange. The objective is to support the development and effective use of national
defence research and technology and to meet the military needs of the Alliance, to maintain a technological lead, and to
provide advice to NATO and national decision makers. The RTO performs its mission with the support of an extensive
network of national experts. It also ensures effective coordination with other NATO bodies involved in R&T activities.

RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors. It comprises a
Research and Technology Board (RTB) as the highest level of national representation and the Research and Technology
Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to facilitate contacts with the
military users and other NATO activities, a small part of the RTA staff is located in NATO Headquarters in Brussels. The
Brussels staff also coordinates RTO’s cooperation with nations in Middle and Eastern Europe, to which RTO attaches
particular importance especially as working together in the field of research is one of the more promising areas of initial
cooperation.

The total spectrum of R&T activities is covered by 7 Panels, dealing with:

• SAS Studies, Analysis and Simulation

• SCI Systems Concepts and Integration

• SET Sensors and Electronics Technology

• IST Information Systems Technology

• AVT Applied Vehicle Technology

• HFM Human Factors and Medicine

• MSG Modelling and Simulation

These Panels are made up of national representatives as well as generally recognised ‘world class’ scientists. The Panels also
provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is carried
out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can organise
workshops, symposia, field trials, lecture series and training courses. An important function of these Technical Teams is to
ensure the continuity of the expert networks.

RTO builds upon earlier cooperation in defence research and technology as set-up under the Advisory Group for Aerospace
Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share common roots
in that they were both established at the initiative of Dr Theodore von Kármán, a leading aerospace scientist, who early on
recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising on these common roots in
order to provide the Alliance and the NATO nations with a strong scientific and technological basis that will guarantee a
solid base for the future.

The content of this publication has been reproduced
directly from material supplied by RTO or the authors.

Published December 2000

Copyright RTO/NATO 2000
All Rights Reserved

ISBN 92-837-1049-5

Printed by St. Joseph Ottawa/Hull
(A St. Joseph Corporation Company)

45 Sacré-Cœur Blvd., Hull (Québec), Canada J8X 1C6

ii

Commercial Off-the-Shelf Products
in Defence Applications

“The Ruthless Pursuit of COTS”
(RTO MP-048)

Executive Summary

Commercial Off The Shelf (COTS) software packages have been proposed for many military
applications, including embedded systems, communication systems, operating systems, and in some
cases critical military applications. A primary reason for proposing COTS for military applications is
an assumption that software lifecycle costs would be substantially reduced. Such a mandate has major
implications for acquisition, design, production, evaluation, and testing of systems that must maintain
high levels of assurance.

Verified and validated levels of software quality, safety, reliability, sustainability, and survivability can
be difficult to obtain and are often expensive to achieve. However, critical military applications
demand levels of software assurance that most vendors do not apply to their commercial products.
Although the cost saving benefits of COTS packages for non-critical applications is undisputed, there
continues to be an on-going debate on the cost benefits of COTS software for critical applications
(military or commercial).

Various approaches have been proposed for COTS utilization for military systems. One approach is to
adopt COTS software for non-critical military applications, where an organization’s operations concept
is modified to be consistent with the commerciality properties of a COTS software package. A second
approach is to adapt COTS software for military applications, where the original source is modified to
be consistent with unique operational requirements. A third approach is to modify COTS software for
critical military applications, where an independent testing organization obtains the original vendor
source code for assurance testing. Modified COTS software generally requires a substantial change to
vendor source code. A fourth approach assumes that COTS software packages cannot be adequately
evaluated or verified, and should not be used for any critical military systems.

In order to address procurement, design, evaluation, testing, verification, validation, adoption,
adaptation, and modification issues associated with the acquisition and utilization of COTS software
packages for military systems, NATO hosted a three-day symposium in Brussels, Belgium. The
symposium consisted of two keynote speakers, and six technical sessions consisting of twenty-four
presentations.

The symposium treated the subject with rigor that is characteristic of a mature engineering discipline.
This symposium and its products will be a standard by which COTS software evaluation and
certification is measured for years to come. Presentations were thorough, accurate, and current. Several
presentations actually anticipated results that have yet to appear in archival journals.

iii

l’Utilisation des produits vendus sur étagères dans
les applications militaires de défense

“l’Exploitation sans merci des produits commerciaux”
(RTO MP-048)

Synthèse

Des progiciels disponibles sur étagère (COTS) ont été proposés pour de nombreuses applications
militaires, y compris pour des logiciels intégrés, des systèmes de communication, des systèmes
d’exploitation et, dans certains cas, des applications militaires indispensables à la mission. L’une des
principales raisons pour laquelle le matériel COTS est proposé pour des applications militaires réside
dans le fait que son achat permettrait de réduire considérablement les coûts globaux de possession des
logiciels. Une telle proposition a des conséquences majeures pour l’acquisition, la conception, la
fabrication, l’évaluation et les essais de systèmes censés garantir des hauts niveaux de fiabilité
militaires.

Des niveaux vérifiés et validés de qualité, de sécurité, de fiabilité, de soutenabilité et de survivabilité
des logiciels peuvent être difficiles et coûteux à obtenir. Cependant, les logiciels demandés pour les
applications militaires indispensables à la mission exigent des niveaux de fiabilité qui sont rarement
rencontrés dans le commerce. Bien que les économies de coûts résultant des achats COTS pour des
applications non-décisives soient indiscutables, le débat sur les coûts-avantages des logiciels COTS
pour des applications indispensables à la mission (militaires ou commerciales), reste d’actualité.

Différentes approches ont été proposées pour la mise en œuvre de produits COTS dans les systèmes
militaires. L’une d’entre elles consiste à adopter les logiciels COTS pour des applications militaires
non-critiques, où le concept d’opérations d’une organisation est modifié pour être compatible avec les
caractéristiques commerciales d’un progiciel COTS. Une deuxième approche consiste à adapter les
logiciels COTS aux applications militaires, où la source est modifiée pour la rendre compatible avec
des besoins opérationnels spécifiques. Une troisième approche consiste à modifier des logiciels COTS
destinés à des applications militaires, où une organisation d’essais indépendante obtient le code source
du fournisseur afin de réaliser des essais de fiabilité. En général, la modification des logiciels COTS
entraı̂ne, à son tour, des modifications considérables au niveau du code source du fournisseur. Dans
une quatrième approche, il est supposé que les progiciels COTS ne peuvent être ni évalués ni vérifiés
de façon satisfaisante, et que par conséquent, ils ne doivent pas être utilisés dans des systèmes
militaires indispensables à la mission.

L’OTAN a organisé un symposium de trois jours à Bruxelles en Belgique, afin d’examiner
l’approvisionnement, la conception, l’évaluation, les essais, la validation, l’adoption, l’adaptation et la
modification dans le cadre de l’acquisition et la mise en œuvre de progiciels COTS pour applications
militaires. Le programme du symposium a comporté deux discours d’ouverture et six sessions
techniques, qui ont permis la présentation de vingt-quatre communications.

Le sujet a été traité avec la rigueur caractéristique d’une discipline d’ingénierie déjà au point. Ce
symposium et les documents associés vont représenter une norme pour l’évaluation et la certification
des logiciels COTS pendant de nombreuses années. Les présentations étaient complètes, précises et
d’actualité. Dans certains cas, elles ont même fait état de résultats qui ne sont pas encore apparus dans
la presse spécialisée.

iv

Contents

Page

Executive Summary iii

Synthèse iv

Theme/Thème vii

Information Systems Technology Panel viii

Reference

Technical Evaluation Report T
by M.S. Fisher

Robust Nonproprietary Software KN1
by P.G. Neumann

SESSION I: ACADEMIC PERSPECTIVE:
COTS ACQUISITION, UTILISATION AND EVALUATION

Chairman: Dr M. SLOAN (US)

Wrapping the COTS Dilemma 1
by I. White

The COTS IT Circle 2
by A. Weiss

Standards – Myths, Delusions and Opportunities 3
by N. Peeling and R. Taylor

SESSION II: COTS ACQUISITION CHALLENGES
Chairman: Dr M. VIGDER (CA)

Environment for Signal Processing Application Development and PrOtotypiNg - 4
ESPADON

by B. Madahar, J. Hunink, G. Edelin, J. Smith and B. Saget

United States Army Commercial Off-the-Shelf (COTS) Experience: The Promises and 5
Realities

by J.J. Barbarello and W. Kasian

The Coordinated Defence Role in Civil (Telecom) Standardisation 6
by J.P. Thorlby

Risks by Using COTS Products and Commercial ICT Services 7
by S. Jantsch

C3I Systems Acquisition and Maintenance in Relation to the Use of COTS Products 8
by S. Rampino and M. Fiorilli

COTS Software Evaluation Techniques 9
by J.C. Dean and M.R. Vigder

v

SESSION III: COTS: EVALUATION AND ASSURANCE
Chairman: Dr I. WHITE (UK)

Reliable Tailored-COTS via Independent Verification and Validation 10
by M.A. Beims and J.B. Dabney

COTS Software Supplier Identification and Evaluation 11
by A. Miller

Maintaining COTS-Based Systems 12
by M.R. Vigder and J. Dean

Detection of Malicious Code in COTS Software via Certifying Compilers 13
by R. Charpentier and M. Salois

Application of COTS Communications Services for Command and Control of Military 14
Forces

by P. Kerr and J. McCarthy

Confidently Integrating COTS Software Under Worst Case Assumptions KN2
by J. Voas

The Convergence of Military and Civil Approaches to Information Security? 15
by R. Rowlingson

Dynamic Detection of Malicious Code in COTS Software 16
by M. Salois and R. Charpentier

The Ruthless Pursuit of the Truth about COTS 17
by N.F. Schneidewind

Determining the Suitability of COTS for Mission Critical Applications 18
by R.J. Kohl

SESSION IV: VENDOR PERSPECTIVE: COTS
Chairman: Major W. TACK (BE)

Six Facets of the Open COTS Box 19
by D.H. Dumas

Lotus White Paper on COTS Software for Military Crisis Applications 20
by P. Fournery and U. Sorensen

Wireless TCP/IP and Combination with Broadband Media 21
by T.A. Kneidel

COTS Based Systems: The Necessity of a Service & Systems Management Strategy to 22
Assure Service Levels

by D. Somerling

SESSION V: USER PERSPECTIVE: COTS
Chairman: Major W. TACK (BE)

Modernizing OMIS, an Operational Airforce C2 System, Using COTS Hardware and 23
Software Products

by J.G. Stil

SESSION VI: COTS: INTEGRATION
Chairman: Major W. TACK (BE)

Experiences in Designing Radio Monitoring Systems Using Commercial Off-the-Shelf 24
(COTS) Components

by G. Palten

vi

Theme

Industrial and commercial-grade information technology (IT) products such as workstations, networking
products, and databases have long been employed by the military. While these are clearly commercial-off-the-
shelf (COTS) information technology products, the term COTS now commonly includes commodity personal
computers, operating systems and productivity tools designed for the consumer market. Commercial office
automation suites, electronic mail, databases, and similar business-oriented software are often directly applicable
to military needs and can be run effectively on inexpensive personal computers. The appropriate use of personal
computers, networks and off-the-shelf software products for military applications is an effective way to improve
efficiency while coping with limited budgets and reduced staff. Recently it has been proposed that these same
products be employed as mandated platforms, operating systems and major software elements for all but the
most specialised defence applications. Such a mandate has major implications for design, production and
employment of systems able to maintain military levels of assurance. This symposium will address NATO
interests and issues in employing COTS hardware and software while maintaining required levels of system
assurance.

TOPICS TO BE COVERED:

1) Standards and standardisation
2) Consumer, commercial, and industrial COTS availability and assurance properties
3) Methods for providing high assurance while employing low assurance products
4) Interoperability and software product migration
5) Obsolescence and upgrade policy
6) Integration with legacy systems
7) Interoperability with coalition systems

Thème

Des produits informatiques (IT) industriels et du commerce tels que postes de travail, produits conçus pour le
travail en réseau et bases de données, sont en service dans les armées depuis longtemps. Bien qu’il s’agisse
évidemment de produits informatiques du commerce (COTS), le terme COTS s’utilise aussi aujourd’hui pour les
ordinateurs personnels, les systèmes d’exploitation et les outils de productivité destinés au grand public. Les
programmes de bureautique, le courrier électronique, les bases de données et autres logiciels de bureau sont, en
effet, souvent utilisables directement pour les tâches militaires et peuvent être exploités de façon satisfaisante sur
des ordinateurs personnels de coût modique. La mise en œuvre judicieuse d’ordinateurs personnels, de réseaux et
de logiciels du commerce pour des applications militaires devrait ainsi permettre de travailler plus efficacement
dans un contexte de réduction d’effectifs et de restrictions budgétaires. Il a été proposé récemment d’utiliser ces
produits comme plates-formes, systèmes d’exploitation et progiciels autorisés pour toutes les applications
militaires, à l’exception des plus sensibles. Une telle orientation a des conséquences majeures pour la conception,
la fabrication et la mise en œuvre de systèmes devant garantir des niveaux de sécurité compatibles avec les
missions. Ce symposium examinera à la fois les avantages possibles pour l’OTAN et la compatibilité entre la
mise en œuvre de matériels et de logiciels COTS et le maintien des niveaux de sécurité des systèmes requis par
ces missions.

SUJETS A TRAITER :

1) Normes et normalisation
2) Disponibilité et fiabilité des produits COTS grand public, commerciaux et industriels
3) Méthodes susceptibles d’assurer un haut niveau de sécurité de fonctionnement avec des produits de

niveau élémentaire
4) Interopérabilité et migration des logiciels
5) Obsolescence et politiques de modernisation
6) Intégration dans des systèmes existants
7) Interopérabilité entre systèmes au sein d’une coalition.

vii

Information Systems Technology Panel
Chairman Deputy Chairman

Dr M. VANT Dr R. JACQUART
Deputy Director General Directeur du DTIM
Defence Research Establishment Ottawa ONERA/DTIM
Dept of National Defence BP 4025
3701 Carling Ave 31055 TOULOUSE CEDEX 4, FRANCE
OTTAWA, ONTARIO, K1A 0K2, CANADA

TECHNICAL PROGRAMME COMMITTEE

Chairman: Dr L BLAZY US

Members: Maj W TACK BE
Dr G VEZINA CA
Dr I WHITE UK
Prof M SLOAN US

PANEL EXECUTIVE

From Europe: From the USA or CANADA:

RTA-OTAN RTA-NATO
Lt-Col A GOUAY, FAF Attention: IST Executive
IST Executive PSC 116
BP 25, 7 rue Ancelle APO AE 09777
F-92201 NEUILLY SUR SEINE CEDEX, FRANCE

Telephone: 33-1-5561 2280/82 - Telefax: 33-1-5561 2298/99

HOST NATION LOCAL COORDINATOR

Major W TACK
General Staff, JSM-R&T/Space
Everestraat, 1
B-1140 BRUSSELS, BELGIUM
Tel: (32) 2 701 66 15
FAX: (32) 2 701 66 20

ACKNOWLEDGEMENTS/REMERCIEMENTS

The IST Panel wishes to express its thanks to the RTB members from Belgium for the invitation to hold this Symposium
in Brussels and for the facilities and personnel which made the Symposium possible.

Les membres de la commission IST tiennent à remercier les membres du RTB de la Belgique pour leur invitation à tenir
cette réunion à Bruxelles, ainsi que pour les installations et le personnel mis à sa disposition.

viii

T-l

Technical Evaluation Report

Marcus S. Fisher
NASA Ames IV&V Facility

100 University Dr.
Fairmont, WV 26554, USA

Abstract

It has been proposed that Commercial Off-The-Shelf
(COTS) products be procured for applications within
military systems. Such a proposal can generate
significant concern when COTS products are used for
mission-critical systems. Having a significant interest in
this approach, NATO organized a three-day symposium
to address risks, benefits, and issues associated with
COTS acquisition, utilization, and assurance. The
purpose of this paper is to evaluate overall technical
merit of this symposium.

Introduction

In an attempt to advance "the engineering" of software,
organizations frequently adopt new technologies that
promise to decrease software costs and improve the
delivery time. Armed with such promises many
organizations believed they had discovered a Holy Grail
for software development. By what measures do we
conclude that integrating such promising technologies,
such as COTS, do in fact live up to there promised
benefits?

The use of Commercial-Off-The-Shelf (COTS) products
is one of these promising technologies. Recently it has
been proposed that COTS products be employed as
mandated platforms, operating systems, and major
software components for military applications. Such a
mandate has major implications for acquisition, design,
production, test, and deployment of such systems that
must maintain high levels of assurance. The use of
COTS components for military applications proposes to
increase the efficiency of development and deployment
while maintaining and even decreasing the cost of such
systems.

NATO has a significant interest in resolving these issues
and organized a three-day symposium to address
benefits, risks, and issues involved when utilizing COTS

components in critical military applications. They have
strategically identified key topics with the intent of
forging a common understanding of the practice,
problems, and possible paths to take when engineering
COTS based systems. They acquired multiple
viewpoints from many NATO countries that addressed
the following topics:

- Standards and Standardization,
- COTS availability and assurance properties,
- Methods for providing high assurance while

employing low assurance products,
- Interoperability and software product migration,
- Obsolescence and upgrade policy,
- Integration with legacy systems, and
- Interoperability with coalition systems.

Evaluation

The three-day symposium consisted of two keynote
speakers and six technical sessions:

Session I: Academic Perspective: COTS
Acquisition, Utilization, and Evaluation
Session II: COTS Acquisition Challenges

- Session III: COTS Evaluation and Assurance
- Session IV: Vendor Perspective

Session V: User Perspective
Session VI: COTS Integration

This section addresses each session individually,
identifies emerging technologies presented, and impacts
these technologies can have on successful COTS
integration.

Two keynote presentations established a foundation for
the many presentations that followed. Attendees were
reminded of the desirable attributes of critical
information systems, varying definitions of COTS
components, problems/risks associated with using
COTS, open-source versus closed-source software, as
well as an innovative approach for certifying and

T-2

guaranteeing the correctness of COTS software
components.

In order to meet assurance levels of defense applications,
COTS developers must provide guarantees about their
software behavior, which should be captured in a
Software Quality Warranty. Several approaches were
presented:

1) Process Certification - incorporating and
establishing standard practices for developing
software (e.g., ISO, CMM, IEEE)

2) Personnel Certification - certifying the
developers themselves (e.g., IEEE)

3) Product Certification - The end goal is to create
a product based quality evaluation method

The approaches presented above may increase the quality
of software being developed, but only one assures the
product itself is of high quality. Process certification
implies a certified software development process
produces high quality software. Personnel certification
implies that certified personnel always produce quality
software. Product certification provides a methodology
for assuring COTS products.

A product certification approach presents significant
controversy because it would require a major paradigm
change in industry. However, it does seem logical that
one start advocating the production of quality software.
What is missing? A paradigm to quantitatively assess
software quality based on rigorous product testing
techniques with very well defined environmental
assumptions.

A software certification approach requires collaborative
efforts between military and industry personnel to define
a suitable paradigm for developers of COTS components
to follow, and to certify their software products.

Session I

Session one focused on an academic discussion of issues
associated with COTS acquisition, utilization, and
evaluation. Basic assumptions included that using COTS
components in software systems is inevitable, people
perceive that software components are cheaper to buy
than build, and that software products are buggy.

There were several problems introduced that can be
remedied by science and engineering practices. One
such problem is that there does not exist a formal
system's assurance paradigm for COTS based systems.
The questions that need to be answered include the
following:

1) Is the product properly specified?
2) What guarantees are given of its performance?
3) What is its reliability in performing the task?
4) What undeclared features are present (a.k.a.

Easter Eggs)?

Although the need for an assurance paradigm was
emphasized, current methodologies do not address the
assurance aspects from a system's perspective.

Methodologies such as black box testing, conformance
testing, use of safety critical techniques, and code
analysis were presented. However, they do not take a
systems approach, they do not address integration issues,
nor do they provide for a system perspective.

A few innovative techniques for product assurance were
introduced that do warrant further consideration:

- Wrapping the COTS components, and
- Developing formal behavior specifications.

Wrapping COTS component takes on the perspective
that we can't cure the inherent COTS faults, so we must
live with them. By developing code and inserting it
between a component and a system, we would insulate
the system from erroneous behavior. We have seen this
approach effectively employed for legacy code and even
in newer technologies such as Common Object Request
Broker Architecture (CORBA), where we define the
interfaces components support. This approach is unique
because now we are employing a methodology to guard
against non-specified behaviors, which act as a filter to
protect the system as a whole.

Behavioral specifications formally specify a component's
behavior, which encapsulates the completeness criteria
for black box specification requirements. However there
are a few drawbacks, such as the non-trivial costs
associated to produce a detailed specification, and COTS
suppliers must be willing to develop them. An
advantage for developing such a specification is that all
customers can theoretically share the same specification,
which gives the producers a market advantage over their
competitors.

In addition to a lack of a formal systems assurance
paradigm, other problems were noted that surfaced
during the symposium such as:

- The lack of a "Best Practices" forum, and a user
group focused entirely on COTS based systems',
and

- The effects COTS have on configuration
management.

One concluding observation was the lack of a centralized
forum for disseminating best practices, lessons learned,
successes, failures, standards and recommendations, et
cetera. Techniques that have paid off in the past are
often overlooked because of lack of broad participation.

Configuration management practices need to address
change when dealing with components that are
constantly being upgraded. As newer versions for
components surface, the upgrade to the newer version

T-3

requires considerable attention. Attention that current
techniques do not address.

Session II

Session two focused on acquisition challenges associated
with COTS based systems. Customers are experiencing
a major paradigm shift in the software development
process. Not only has the military mandated the use of
COTS products, current approaches used to develop
software either lend themselves easily to the use of
COTS, (e.g., prototyping or Rapid Application
Development (RAD)), or are not at all, (e.g., waterfall).
This has motivated the genesis of newer development
methodologies.

One innovative approach to COTS acquisition is to
support software reuse, concurrent engineering, and
rapid prototyping. Other presentations showed through a
series of case studies when to "Adopt" a COTS package,
when to "Adapt" a COTS package into the system, and
when to "Develop" software components.

Additional discussions focused on where and when do
you evaluate and select a COTS package? There have
been attempts to provide COTS evaluation techniques
but they rely on traditional development paradigms and
highly structured requirements. An alternative
methodology discussed was one in which the COTS
software selection is done in parallel with the
requirements definition. Using this approach allows the
system requirements to be massaged to enable easy
adaptation of predefined COTS components. This does
present controversy because this technique suggests the
creation and evolution of system requirements are
influenced and even changed by the availability of COTS
products. Do we allow our system expectations to be
determined by the functionality and availability of COTS
products?

Another major issue discussed was where do standards
fit into to the COTS acquisition process? Standards have
shown to provide interoperability, market development,
competition, and they leverage on past experiences.

We have touched on facets of software development life
cycles, incorporating standards, and assuming a systems
perspective. What is lacking are risk management or
analysis techniques required as a result of these new
development and COTS component scenarios. We have
not explored whether our current methodologies of risk
management can be incorporated into these innovative
techniques or if they need to be evolved.

Session III

Session three addressed evaluation and assurance
techniques currently being employed for COTS intensive
systems. Discussions addressed why we should even
consider investing into this technology and concluded
that since the military has become a key player and
major customer of COTS products then they need to be a
major driver in establishing requirements for COTS
developers.

Taking COTS component that works well in one
environment, and then adapting it into another
environment is not always effective. We are faced with
the following challenges when integrating COTS:

- Meeting all the requirements and nothing more,
- High reliability from the product,

Constant availability,
- High quality from the product, and
- Rigorous recovery requirements.

To meet these challenges some proposed techniques
include:

- Robust verification plans,
- Early prototyping,
- Good relations with the COTS producers,
- Up front systems engineering evaluations, and

Insight into the product.

In addition maintenance plans need to be more robust of
the product changes ensued, which indirectly effects the
entire life cycle, especially the Operations and
Maintenance (O&M) phases. It was shown that for
COTS intensive systems a large percentage of the
development costs fall into the maintenance phase. The
maintenance of such systems has many issues:

- Focusing on high level COTS products and not
low level source code,

- Evolution of COTS products is under the
control of the product developer,

- Visibility into the product is limited, and
- Tailoring and gluing code together is intensive.

Although it is advantageous to evaluate the COTS
product, some others recommended we evaluate the
producers of COTS products. By producing a repository
of carefully and rigorously evaluated developers of
COTS products a more efficient environment for
selecting COTS packages can be provided. There were
two approaches proposed:

1) Software Process Assessment
2) Tailored CMM Assessment

T-4

The symposium also experienced dynamic integration
and analysis techniques. Techniques to consider include:

"Intelligent Agents" that roam a system, profiling
the execution and avoiding any erroneous
behaviors,

- Signature or heuristic based analysis,
- Fault injection and wrapping, and
- Certification while compiling.

Certify while compiling was presented as a means to
perform formal verification on the intended COTS
packages. By creating a formal specification of the
expected behavior a certification compiler can prove that
the specification holds throughout the COTS package.
This provides a sound scientific and mathematical
approach to prove the component behaves as intended,
however the feasibility of this technique was not
addressed. Can entry-level development teams
incorporate such a technique? Of course we do not
administer this technique on every Source Line Of Code
(SLOC), so it may be feasible to employ this technique
on identified critical vectors traced through the code.
We take a similar approach when we fold the state space
during model checking.

Adapting a COTS product to an operational
environment, for which it was not intended, may achieve
a cost benefit and still achieve system reliability
requirements when augmented with an appropriate
Independent Verification & Validation (IV&V) activity.

Having proposed that, what changes are required to
ensure this? Some of the key elements of an approach
include:

- The identification of unchanged but
operationally affected code,

- Development of automated code analysis tools,
- Software scenario analysis research,
- Exploitation of historical databases, and
- Shelf life used as a risk reduction factor.

Some of the interesting discussions that stemmed from
this work focused on model checking and software
scenario analysis. These are effective techniques to
control state-space explosions and identify unsuspected
behavioral properties. Is the tailored approach project
specific? As with all IV&V practices, it must conform to
the development environment for which it is intended.
However there are core computer science principles that
hold true for all projects, such as intractability and
reachability, so it is conceivable that a robust verification
and validation plan can lead to a reliable and efficient
COTS intensive system.

Achieving interoperability and lower cost has resulted in
sacrificing reliability, security, and maintainability. So
we ask ourselves, when do we employ the use of COTS
products? The majority says, "don't" when the system
involves mission critical applications that cannot have

insight into the COTS component, otherwise it may be
feasible.

Session IV, V, and VI

The last three sessions contained similar themes and
focused on vendor perspectives, user perspectives, and
integration of COTS.

Have we evolved to an acceptable level that facilitates
the efficient management of our entire IT environment?
Practice does not seem to believe so. Management's role
has positioned itself in such a way it manages platforms
separately, relative to the domain of the module. The
database component is managed separately from the
network component, which could cause a redundancy in
decisions, policy, and activities. Assuming an end-to-
end management schema would enable the entire system
to be optimally managed decreasing the amount of effort
that can be exposed during development and
deployment. This concept is actually an innovative
approach that uses proven established techniques.
Similar techniques are employed by system
administrators to monitor the network in hopes of
identifying and avoiding network outages. So promoting
this concept to encompass the entire IT system is
certainly a task worthy of further exploration.

As previously stated military insight into COTS products
is extremely important. We have witnessed the evolution
of civilian requirements imposed on COTS packages.
We came from a paradigm that advocated quick
development and a lot of functionality, in hopes of
getting the product to market first. Currently it seems
that civilian requirements are starting to resemble
military crisis-mode requirements:

- Availability,
- Scalability,
- Reliability,
- Secure, and
- Interoperable.

A focal point is how to get industry to build highly
reliable components.

COTS packages can be rendered and interpreted through
an assessment of several qualitative dimensions. These
dimensions include:

- Presentation interface: performance and
universal access,

- Release compatibility: bug fixes, requirements,
backward compatibility,

- Portability: interoperability, scalability,
flexibility,

- Programming Interface: APIs and openness,
Security Interfaces: integration with existing
infrastructure, and

T-5

- Management interfaces: if you don't monitor
then you can't manage.

This can be implemented multi-dimensionally, allowing
scalability. This in turn can be used to find a "best fit"
relative to system requirements in order to ensure its
long-term applicability in a particular environment.
However complexity arises when defining the "best fit"
property and even determining the appropriate
dimensions. This directly correlates to design spaces
when we employ the use of design matrices to evaluate
plausible architectures.

Conclusion

A third of the presentations addressed a subset of
techniques that can be encapsulated as an appropriate
system's assurance (Verification and Validation)
paradigm. We have yet to identify which technique
works best in certain situations. In addition we have
seen the beginning of several analytical assurance
techniques, which do not rely on the existence of source
code.

COTS based acquisitions are not a cost-effective strategy
for critical military systems. There are several reasons:
limited assurance, latent bugs, no availability, not all the
requirements are satisfied, and defined requirements
need to be massaged for integration of a COTS package.

In light of military attitudes to long-term budgeting, no
serious consideration will be given to COTS life cycle
costs as opposed to initial procurement costs. The
acquisition process is the biggest impediment for the use
of COTS. Individuals need to understand the life cycle
and the costs associated with it. The impediment is that
managers must get a system out the door on time and
within cost.

Open-source versus closed-source products, which are
cost effective and risk adverse? We have little
experience taking apart closed-source products, and we
have better reliability via feedback mechanisms on open-
source products. Critical systems need source code for
formal verification techniques, and we lack appropriate
tools to perform assurance techniques on closed-source
products. In addition we need to move past our
component assurance paradigm and maneuver more
towards a systems assurance paradigm.

Recommendations

Employing COTS has been strongly correlated with
saving money, a correlation that does not have strong
empirical evidence. Additional assurance activities must
be employed to achieve an acceptable level of risk of
COTS products. The cost of these additional activities
must not exceed the savings yielded from the use of
COTS. Some of the associated drivers include the cost

of acquiring the software, cost of upgrading the software,
cost of software being unavailable for use, cost to repair
the software, and cost of additional assurance activities.

In addition, the need for quality products that control
military critical systems has recently surfaced. To
answer this challenge industry needs to explore the
development of a certification paradigm that
quantitatively grades software quality by rigorous testing
techniques with very well defined environmental
assumptions.

The symposium revealed several evaluation and
assurance techniques that can be employed to assist
development of a COTS intensive system. However,
there does not exist a formal system's assurance
paradigm. A formal discipline could be conceived from
the synergy of current techniques; however these ideas
need to be explored and more importantly empirically
validated. Some related topics that require further
attention include:

- New testing strategies,
Software Architecture Theory,
Testbeds or agents that probe or monitor the
environment where COTS products live,
Model checking and reachability analysis must
ensure that folding the state space retains the
vectors of critical paths. Keep research dollars
away from exhaustive testing approaches, path
coverage analysis, and infallible proof finders
for we know these are NP-complete problems,

- Risk management and/or risk analysis
techniques need to evolve to incorporate COTS
based systems, and

- Current COTS evaluation techniques need to be
empirically proven.

There are a significant number of groups that have a
vested interest in this topic. These issues warrant
considerable attention, especially from a military
perspective. This is why a "COTS User Group" needs to
be established and administrated by NATO, in order to
bring together members of academia, research, and
operations. This would provide an optimal working
environment to combat the problems, research issues,
and failures of COTS based systems while disseminating
the best practices, lessons learned, successes, and
recommendations. A "COTS User Group" could easily
model itself around the workings of the "Object
Management Group (OMG)" or the "World Wide Web
Consortium (w3c)". A few examples of issues the group
could address are:

Development of standards/recommendations,
which focus on required COTS characteristics
for mission critical systems,

- Evolving commercial standards
(recommendations),
Evaluation of development life cycle
methodologies,

T-6

- Administering the development of a formal
systems assurance paradigm.

As the industry embarks on newer technologies it is
appropriate to assess the applicability of the different
phases in the development life cycle and how the newer
concepts and techniques affect them. As a result of
several discussions it was concluded that defense
procurement requires a drastic paradigm shift.
Unfortunately the topic was not further entertained,
ideally a model for the procurement process would be
developed that can be easily configured in different
environments. In addition there were a lot of concerns
regarding the lack of efforts allocated towards
configuration management and the operations and
maintenance phases of COTS based systems.

NATO should conduct a follow up symposium within a
few years, in order to identify COTS assurance
technologies and concepts that have stabilized, evolved,
or even disappeared. Keeping this symposium as a
baseline would serve as a measure that reflects the
effectiveness its' results have on employing COTS
components in military applications.

KNl-1

Robust Nonproprietary Software

Peter G. Neumann
Principal Scientist, Computer Science Lab

SRI International, Menlo Park CA 94025-3493, USA
Neumann@csl.sri.com, http://www.csl.sri.com/neumann, 1-650-859-2375

©Copyright 2000 IEEE, included here with permission

The following text is a preprint of a position paper for a panel session at the IEEE Sym-
posium on Security and Privacy, 2000 May 15-17, and will be included in the Proceedings
of that conference. It serves here as a narrative explanation of the subsequent slides for my
NATO talk, "The Potentials of Open-Box Source Code in Developing Robust Systems".

Our ultimate goal here is to be able to develop robust systems and applications that are
capable of satisfying serious requirements, not merely for security but also for reliability, fault
tolerance, human safety, and survivability in the face of a wide range of realistic adversities
- including hardware malfunctions, software glitches, inadvertent human actions, massive
coordinated attacks, and acts of God. Also relevant are additional operational requirements
such as interoperability, evolvability and maintainability, as well as discipline in the software
development process.

Despite all our past research, development of commercial systems is decidedly suboptimal
with respect to meeting stringent requirements. This brief paper examines the applicability
of some alternative paradigms.

To be precise about our terminology, we distinguish here between black-box (that is,
closed-box) systems in which source code is not available, and open-box systems in which
source code is available (although possibly only under certain specified conditions). Black-
box software is often considered as advantageous by vendors and believers in security by
obscurity. However, black-box software makes it much more difficult for anyone other than
the original developers to discover vulnerabilities and provide fixes therefor. It also hinders
open analysis of the development process itself (which is something many developers are
happy to hide). Overall, it can be a serious obstacle to having any unbiased confidence
in the ability of a system to fulfill its requirements (security, reliability, safety, etc., as
applicable).

We also distinguish here between proprietary and nonproprietary software. Note that
open-box software can come in various proprietary and nonproprietary flavors.

Examples of nonproprietary open-box software are increasingly found in the Free Soft-
ware Movement (such as the Free Software Foundation's GNU system with Linux) and the
Open Source Movement, although discussions of the distinctions between those two move-
ments and their respective nonrestrictive licensing policies are beyond the scope of this brief
analysis. In essence, both movements believe in and actively promote unconstrained rights
to modification and redistribution of open-box software [2].

The benefits of nonproprietary open-box software include the ability of outside good
guys to carry out peer reviews, add new functionality, identify flaws, and fix them rapidly
- for example, through collaborative efforts involving people widely dispersed around the
world. Of course, the risks include increased opportunities for evil-doers to discover flaws
that can be exploited, or to insert trap doors and Trojan horses into the code.

A question for this panel is what are the roles of open-box software in developing robust
systems, in light of (for example) the Internet, typically flawed operating systems, vulnerable

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

KN1-2

system embeddings of strong cryptography, and the presence of mobile code. An architec-
tural subquestion involves where trustworthiness must be placed to minimize the amount
of critical code and to achieve robustness in the presence of the specified adversities.

Will open-box software really improve system security? My answer is not by itself,
although the potential is considerable. Many other factors must be considered. Indeed,
many of the problems of black-box software can also be present in open-box software, and
vice versa (for example, flawed designs, the risks of mobile code, a shortage of gifted system
administrators, and so on). In the absence of significant discipline and inherently better
system architectures, opportunities may be even more widespread for insertion of malicious
code in the development process, and for uncontrolled subversions of the operational process.

We face the basic conflict between (a) security by obscurity to slow down the adversaries,
and (b) openness to allow for more thorough analysis [3] and collaborative improvement
of critical systems - as well as providing a forcing function to inspire improvements in
the face of discovered attack scenarios. Ideally, if a system is meaningfully secure, open
specifications and open-box source should not be a significant benefit to attackers, and
the defenders might be able to maintain a competitive advantage! For example, this is the
principle behind using strong openly published cryptographic algorithms - for which analysis
of algorithms and their implementations is very valuable, and where only the private keys
need to be hidden. Other examples of obscurity include tamperproofmg and obfuscation.
Unfortunately, many existing systems tend to be poorly designed and poorly implemented,
with respect to incomplete and inadequately specified requirements. Developers are then
at a decided disadvantage, even with black-box systems. Besides, research initiated in a
1956 paper by Ed Moore [1] reminds us that purely external (Gedanken) experiments on
black-box systems can often determine internal state details.

Behavioral system requirements such as safety, reliability, and real-time performance
cannot be realistically achieved unless the systems are adequately secure. It is very difficult
to build robust applications based on proprietary black-box software that is not sufficiently
trustworthy.

Further 1956 papers, by Moore, Claude Shannon, and John von Neumann, showed how
to construct reliable components out of less reliable components. Later work on correct
behavior despite some number of arbitrarily perverse Byzantine faults followed along those
lines. In that context, building a fault-tolerant silk purse out of less robust sow's ears is
indeed possible in some cases. But constructing more trustworthy secure systems out of
less trustworthy subsystems does not seem realistic when the underlying components are
compromisible, despite efforts such as wrapper technology and firewall isolation.

Whenever achieving security by obscurity is not the primary goal, there seem to be strong
arguments for open-box software that encourages open review of requirements, designs,
specifications, and code. Even when obscurity is deemed necessary, some wider-community
open-box approach is desirable. For software and for system applications in which security
can be assured by other means and is not compromisible within the application itself, the
open-box approach has particularly great appeal. In any event, it is always unwise to rely
solely on obscurity.

So, what else is needed to achieve trustworthy robust systems that are predictably de-
pendable? The first-level answer is the same for open-box systems as well as closed-box
systems: serious discipline throughout the development cycle and operational practice, use
of good software engineering, rigorous repeated evaluations of systems in their entirety, and

KN1-3

enlightened management, for starters.
A second-level answer involves inherently robust and secure evolvable interoperable ar-

chitectures that avoid excessive dependence on untrustworthy components. One such archi-
tecture involves thin-client user platforms with minimal operating systems, where trustwor-
thiness is bestowed where it is essential - typically, in servers, firewalls, code distribution
paths, nonspoofable provenance for critical software, cryptographic coprocessors, tamper-
proof embeddings, preventing denial-of-service attacks, runtime detection of malicious code
and deviant misuse, etc. [4].

A third-level answer is that there is still much research yet to be done (such as on realistic
compositionality, inherently robust architectures, and open-box business models), as well as
more efforts to bring that research into practice. Effective technology transfer seems much
more likely to happen in open-box systems.

Nonproprietary open-box systems are not a panacea. However, they have potential
benefits throughout the process of developing and operating critical systems. Impressive
beginnings already exist. Nevertheless, much effort remains in providing the necessary de-
velopment discipline, adequate controls over the integrity of the emerging software, system
architectures that can satisfy critical requirements, and well documented demonstrations
of the benefits of open-box systems in the real world. If nothing else, open-box successes
may have an inspirational effect on commercial developers, who can rapidly adopt the best
of the results. But I like the possibilities for coherent community cooperation, and have
considerable hope for nonproprietary open-box software.

References

[1] E.F. Moore, Gedanken Experiments on Sequential Machines, Automata Studies, An-
nals of Mathematical Studies, 34, C.E. Shannon and J. McCarthy, eds., Princeton University
Press, 1956. pp. 129-153.

[2] The Free Software Foundation Website is http://www.gnu.org, and contains soft-
ware, projects, licensing procedures, etc.: The Open Source Movement Website is
http://www.opensource.org/, which includes Eric Raymond's "The Cathedral and the
Bazaar" and the Open Source Definition.

[3] Analytic tools for open-box source code include Crispin Cowan's StackGuard
(http://inununix.org), David Wagner's buffer overflow analyzer
(http://www.cs.berkeley.edu/~daw/papers/), ©Stake's LOpht security review analyzer
slint (http://www.10pht.com/slint.html) and RST's ITS4 function-call analyzer for C
and C++ code (http://www.rstcorp.com/its4/).

[4] The U.S. Army Research Laboratory (ARL) has supported my work on survivable
systems, under contract DAKF11-97-C-0020. See http://www.csl.sri.com/neumajmfor
a report for ARL together with a course taught in the fall of 1999 on developing robust
systems. That Website also contains a paper on single-level multilevel-secure systems, N.E.
Proctor and P.G. Neumann, Architectural Implications of Covert Channels, Proceedings of
the Fifteenth National Computer Security Conference, Baltimore, Maryland, October 13-16,
1992, pp. 28-43, very much in the spirit of the thin-client architecture noted above.

KN1-4

o CD

0- S
3 cd

■<-. .2 0 D
c
0)

s
be

■O
0)

o
c
u

a
o
U
■a
c
ed

o pg

■a on
to £3

13 CM

a o
3 O

0)

3 o
>,ü

.« XI
In

to &
'S a s

■O 3
a .2
cd 43

cd
to "B
bO a
B 0)

^ 5
IB o

u
- 0)

M &H

a
O (H

;s o
O. to
o a

o
»>> to
C 3

<; o

o x
■" Ü
ai a)
cd *

,—i 43
ed O

■E ö
*> o
cd 13

3 T3

.2 B

■Si
3* S co

<

iß cd

Ji
> CO

■B X

CD CD

3- 43

n to
ffl <»

PF- CO 53 CD

■v

cd
o

72

13

_ "
13 13

Ü -a

CD "

3 ^A
cd CO

13 "2
0) CD

to >>
a "

CO (D

5 1

ID

CD X T3

O CO
<* "S

cd H z
»«5
E^ h

>>.2 * CO 13 IH

tuO
a o

"■a -a *

S * 3
S. cd u
o«E£
3:3 ^
P Si

Id cd-S
S to _*"
» c «
SI CD 43

ft, CO n

>>"3

u -a
u a

■2 rt

« cS

«° 43 fcH
•3 0)
3 >
CO [_

-w ^
O w
B .
- i"

CH Ö
CD 0

a 3
S o.

T) ft
cd cd

"Si
^ &

CB

re
be .
a c O .5
CO CD

*H to

B -S CD O

"8 5

CO ^

CD

cd

o
CD

CE Z H

J3

o "a « cÄ ^>

s -
f I

CD B

CD *>

3 I+H >B

1 ja ?
a *
S ^

-3 -a > -g
CD

CD
CD +s
■a so
a »

a -r u

3 X! cr cd
CD
ki "3 ^
cd

_u >>
-»J

-4^>

'E
u

"E
3
u >> CD
to

a
E to

cd
CD

.3
-*J CJ
X 3
CD to

CD

cd
Ü

o <S
ft o

« 2 CD
>> -*> X
m CD JS
3 a

"Ü CD

cd ^

CO

» "2 £
- ra -w

o - u

10 o 2
s u a

J2 3 T3
o o «

ro i

X 9,

Q +a
CD £

a <D T3
■*H -fc3
bo a >.

E Ja -Sf

QJ S

° I !- ft
PH O
u *

SQ
CD CD

E «
o o

on on

3 S
XI 3
O U

3 ^
ft X>
O -w

Id .2
K ft
tO Q,
Cv 3^
ä cd

-k3 >> C3

X-
Ü
* "S o 5
ft - ft >>
cd •a

u

to 'Ü
CD a
« <d
3 CD

^ 3 CD

H cd
. a

5
s
o
e
E ^
O CD
ü a

a> E X 5

o
X

O _v to 33
CD
U OJ
CD

■3
CD (0
t- CD aE
en 0

cd

h °

£ p

3
Ü

E
o
bO •
cd -3
a i2
cd M
a to
c -E 01 _
.2 g •3 cd

3
O
^s

3

2"
x
3

.3 X HH

3 cd +J
ft u ■—
a CD s
S ft u

8 OEE
S • -3

x
o

CD CO
13 >>
o on
U «

CD § "I a 2
bo

si
ft CD

O Q

cd

o ft

_o 05 in u
b. to

X
cd

■ß
CD

M
1

CO
CN
O

i on

CD T}1 s ©
CD cd OS j. a a
.2 '3
on

a
.2
cd

° a

3
t> 3

CD
-*3
3

cd CD CD
CD

3 ft
E
o

"3 3 >■
0 Ä

XI s
ft cd

s a CD a
"3 V

U on ÜHH
a E p-H S

.2 cn

So
Sa =5 ü

CD

on
CD

XI

o .a

o Q co
cd a CD

CD 43
3 s 3 PtJ s 13

0 CD
0 SH X
Ü OH EH

s
3

_&
"CD
PQ

LTD

3 °

P3 °
o" r,
H ft

-3
CD
CD z

>>
on

cd
13

x>-a x g

'S e CD CD

■3
3

a *

2 2 S o
a 43
cd cj

CS

a

3
3"
CD

13
3 _
cd CO

3

CD «H
3 ° as

2 -S h cd

2 g cr .-s 'S
1 x «

CD
X

cd >1-
J

— -s a
S «S "" 14 S *

3
O 3

B bC

-= t. -& - 33

o cd

to

3
CD

s
CD

3
3 2
<D M

a cd .3 3 o
-y 3 O 75

Ü

a 43
43 CD

X a
cd

'3

IB 'E CJ

H-l
to

43

3
u
CD

3
cd
M
CU

g
>
CH

X cd to "5 3

> .-a
■a "^

CO X =i
S >
3 CD

a is

11
CO cd

a .
CD CJ

E "S
& „
o >,
» r > a
CD 3

^ CD
13 co

bo a

* 13
■a K CJ CD
3 ft
co 0

KN1-5

tJJO
c

B 2

3 '5c
o a

^ 4
en

8
PQ

pa
CD X)

0 CD

§ z

.£ CD OJ u u S
«GO
CS CS p.
D. Ö t-
tu 0) 3

"03 o-
u 5 a> ~ 3 >
" - o
5 <s 3
^ is co

.-s S a
s o o

2 42

to >
fc s *- CD Q Q)
ft cB J3

fci b o

« y>3.

es
B

a ft
tie >>

JZ to
£P ß .3 ° ^ '-^
CD u
0) .=

.3 S

S ■- «

o >>\
0) o) j;
-s a M
*° 2 'K

.■a — o i* gu
4J ' v

O Q y
E - Pi

P a >

a»

D
0) "3

.B CS O hH

i 2 •»

£3 * ti w a)
a> g

»no
so«

■ H ID a
es _ B
be 43 a>
IS M ^

B 42

Si £
.2 — 5
4J CS 43

aj So
33 0)
:3 ^

—. ^<
cS $

o bO

(3 .a

01 ■<
01

. bC

"5 'E

,o <s

^ .2

a £ •<

ojO g
> a-2

iuc

3
a

ß

-S O *g
x en

V T3
a u

jj -si

3 S

X a

a ft

CD o
ft o a)

»a

CO
□T *x

■a £
Si
§1 ~C3 TO
i

a> -a
ft 3
3 g

S 2

(S

-a
a
cS

U 3

= 1
X
z

J2

ft <u
O J5

-C (1)

-^z
a a
QJ OJ

3 a ® M
.'S <D
«I 00
.a a
tu 0)

s ^s^ a

42 cs
o _

■»■a
<° 5 0) o

0)
J3

T3
a
o
>■.
0)

J2

T3 ™

S *' es a
-, a)

3-^

en ST
a *>
0) o
ft a

O OJ

a 3

0) «

« o

O ft

.2 8

3

o

en
■
t-
cS

ft
o

2 2 cS >"

si
a r
0) .«

tO U

a

-^ +a
.2 «
ft <<-i
o o
ft ü to

B B* B es 'S a
M U OJ
2 *, .B

O 3
• BO1

X 1)

■a s
0) cS
in >
O CS

o3 .2
C, a;

•o
3 u

kg
H So

•i .a
tJ _ö

■S >

0)
T3

3
0)

OJ 01

ft s
a
>

a
.2

-4J
CO T3

0) '42
es

>5 a
cS

^
•M

ft E
4H
0 to

CD rt T3
a

CD

3
I» CO 3 cS CD

CO 0)
OJ

a S g a a|
3 ö o CD OJ 01

" ft a
CD 42 '-S

.5«S
ja -a h

B ti
o — ^ .5 tD

CO

§ 2.2
50 3
ago
2»»

t*ii Q)

en

CD CO

Ig

>> a

>-i S E
0. a -a
2 ° 2

-*J -w o

.3 3 3
•S-SJS
4* O S

S H «
J S en
. o a

CD «

> CB

o a
PQ

0 -B
PQ a

-* 3

PQ DH

c ^
CD CS

— -a
CD 0)

4= g
„ ft

co a
3 3
cp to

-w CD
S 43

M CO

cS O

ü * ^

co is
-H to

ft ft
o o
- fcj

ft ft
fa "0 p OJ
fe CB

4" O a E
'^ CO
(t) ■"

"S .-
CD 43
3 *
CD -

a ^-,
0) -.

CH O;
o £
w O

a »
o a

■2 o)
cd ■* .a CD

la
CD CO

CD T3

CS g

a 0 3

5 «1
- CB ro

- o3 a»
a a J=
5 » o
CJ 42 S

- CJ
c >

^ o
a S hcC.

CS g

- I cß i2
CD
a T3
o a

^2 cs

>> 3 co cS

a

!> W
? 43
CD w

^ to
- CD
CD co
> 3

ft
CD
CJ t+H
X 0
« co
^ +^

0) u

■° (S o CE
U CD

fl) Ml >, u a *i
S'& a o « 5
« 13 to
ffl T) ^

3 CD
cS 43 >>

— ' 43

>? >> 5
43 'to 3

•C g oj
I* ft co

CS
X

Ö

_0J

"03
Pd

I
O

z

O ID

a §

5 *3
T3 O
+J CO

%£
43 42 «.R

CO OJ
M q-
Ü a
a •" 2
<! tö cS

- 3 ^ co 42 T>
0) = s-,

g<5
3 S-2 a .2 es

IT B 43
> cs o

a 4^

2 °
.2 M.

.a cs
43 ^

CO X
CD U
U "CS

43 3
■E -a
T3 S

42

^S a
o 2
5|

CD W
> T3

^ g
co &'■§
sS CJ hfl
CS CD

=B g -g
CD 3 —'

cS HH ti
•i *

to P O

cS
PM

« Es
X o CB °
IT oT

ill ft

CO

.. M

C 3

CD

■a °
3 '"
O CD

N
a h
0 CD

S3

CO > « P

E7 00
M r-j en
•" ^ en

P
C 3
ft T)

CO

o
en
x □

PQ
1

u
CS

-
ej
ft

_c

>
C
5
Si ^>
x
>>

CO

CB -
a
CD

PQ PQ

3 g
8 3
« ft

+J 0)
a >

— 0)
co T3

4^ co
a <u

5 ^
■S 3
0 -pH

cj -a

x 3
42 O

C3 CD
2 ft
PQ g
• ft

X >,
O

.3
'B
3

X

a;

42

+^
CS

43
■a
a
CS
CO

3
0

CO

X
c
0

'-2
co

42

42

4i
Ü

■c
0
0

-M
CO
u
CD

•c
a

+1

a
.2

4<:
CJ

CS

CS

CO

3

CJ

5
0
X

a

'E
3
u
X

42
0

CO 3 a a
CD

0)

m

03

0
T3

43

"co -
0

a

ft ft
CO

>>
CO 1 CD -

- ■c

T3
CD

3
0

43

a
OJ

a
CD

ft
0)

■0

0 a)
s CD

O

_0
"x

ft
3
0
u

a
0 -
ft

CO

"3
■0
0

a
X
a
0
U

>
■•s
a)
CJ

Cß

=2

CD

42 "E
3
CJ

CD

0 • 3 • .3 • 3 X

KN1-6

■-*

fl

"Pen

"> cu

8 "
a o
B3!

c
tu a

O
■a
B
fl

§ a>

o £

en

1 o
™ x
y £ '£" Xs B
nj cu
a ft
< O

-

CB
x
o

C o
-2 -2
CB u

fa "-»
t- fl a a re
co ^

-a ~
cd -

- a
<~ .2
a o

Is
(8

.S« »
«1 CU cd

'S 5 * TO rt (j
flop
CO 0) tfl

ü

o
U x

■r-
C

'ft*

& >>-B 3
CB o

Is P
a a

CO _;'

B
03 bO

U

ft?
&^ CO £j

xl
b co

fl N >,
>> 0)

■" "3. ,H

0J 2 <u

t, cd u
a a>
a > -0.
ä1 ° « 2 « u

>
-a o

TO (V) •■

• -2 XI

«I i H

"" o.

B 3
- 3

fS
OH ••
o a

• J3

e
Tf o
co u
H a
t—i i-i

o „ u
0) ■p - CO re u
S
£ 3

3
0 3

co \ ^
CJ ö.
3
.2

■p

0 +
+
u

rH
a T3

cu
cu

4-3
a
0)

Q
CO

O

a
q

CO
o
bO
1H
O

CO

B
.2
3

■fl

'%4

X! co
O J*
U Id

U 1*

3 ^3

CU
u

S fa b£ 0<

CO
HW>

X!

.5? 'E
o

'u
0
CO
CO
ct)

B
0

s *+j u
In CO i+-i "C

.5
'to
a
CU

'co
B
cu
u

CB

10
+9

cu >
o
s

a
CB

CB

Q

3
o
CO

a
CD

■3
cu

X>

o a

=3 «S

.5 o
B "ed
O _B

O

cu
u
u
3

cu
cj

3

o
3

£U

cj
'E 3 'S

CO 'B

.B - cd u
CB >

CB

CtH
1

cu
CO

CU >
o o 3 -*J JD CO u to 4J X "0

CO

a
a
a

CO

a
CB

a 4-> U
n

re
s

D
is

tr
i

P
er

m
i

C
o
n
st

N

o
n

d
 'tn CB

a
o
Ü

cd

o

O 0 X)

CU
t-
cd
CO

"o

a
A
X!
0
0

i
0)

X)

■fl
a

'M

cu
3

-a
» a
a o

2 > ^ CB
CB XI

XI
CB

1 U
'co fl

CB

tC0

a

.3
b£
la
>> -
CB >

CN

CO

0
-M fl
IH
-w
CO

a
0
CJ

-

CB

3
A
CB

CO

0)
s-

0

CB
-a

u

a
if

o a a a c *
S o
g .2
4^

aa TO

a°«

0

E
X
CO

^a
+2

CB

a
A

a
CB

'a
a

X)

fl
CB
EM

M s
3
fl

a
CO

XI
T3

CB

X)
a
cd

4J

u
1

4J

0

■■s
0 "fl

0 cd .5
CB cu

0
-a a

u
>. 0

u
-a _fl 3

X a >>J3 a 0
a c:

'4 ° TO
E-g
- 3

"fl s "o CB
0

PQ
i

cd
CO cu

CO

■o
a ft

CO -
D

_CJ

'■4J
CO

cu
CJ

a
J3
?

a a a
o

3 fl CO
0
CB

a

>

3
CB ft 4.

0
CO
• O

P
• 0 CU

ftrO

CB
X &H

•
bicn
CB • fl

0
CO

o
•

cu o >
o ■•i

XI a cu
fl
is

3

0
cu
C-i fl

CO ^
cu
cu -C

£ o
CO

cu cu
J3 cu

Ö TO

© QJ

s §
TC3

Ö a
CO»

33 § fe
ft -e co
S u fa .a o

CO 4=,

fa -a
a S M fl

u

> O rH

X) X)
a cu
fl X)

co 2
+J 3
fci o

I Cfi Cfl 4J
j 3 g 3

"3,-B O

.2 S Ö" .t3

Si n

S o E

3
fa

CO ^ '
cu fti

u B
.2

CU '-+J

cu
0 fa
Ü a

CB

r CD Jo
fa ^^5 33
CO 1-3 > !H

fa fa ^ ts
CB CH CU

-B cB ^ u

B o, fl

O
X)
cu
CU

CB

■5 s

*> a

cfÄ

CB

■3 O

XI CO M
B fl

CB

'3
a

■5
>>
X >> CB a

CO fl
cu

X) ca a «
CJ re
0

in
0
CB

CO
CB

^ +J 3 X
i-H cu o CO

CB

« ca
CO

3 ■>
CB

3
re
a

re"
CJ

QJ3
_B

'-+J CJ CO *+s
B tH CB 1H re
cu CB

CB s fl
re
CB .— o

o ft CO "co a fa
X
0

CB _>
*CO

X
a re

CB
U

u
CB

"fl
a

O
M
X

CQ a w^ J3 A a
1 cu re HW t- A
a
CB
a
0

fa
a
0

0

XI
s

o
CB

fa
CO

re • a a • 3=

Xs fl

Ä <u
o «-
ft a
.2 «w o
2 ü re 3
^ re

t±- a I s

a oi o
CU ^ *-*J
n, <u 3

- 3 5 . a

KN1-7

cd

a ■
O

cu
43
H

■0

■o

0)
Z

43
Cd

^

CU 4*1

I- O re re
X ^

43
QJ -W»

0 *
U X

» S
8 ü
3 "3
0 EH x a

8
B
cu
ft
O

0) o
ö H CÜ EH

60 3
. o
>> to

01

Oi i
4*1 K

Si-.
JI> EH "n

*• S3

.2 « £*

S 2*

S.3

53 o

2 -0 s 3 i cd

ft-3 • 0 -u

T3
S
3
o
EH
bo

4<
u
Cd

43

- bO
o a
„, ft Oi o

43 >

*B

B cd

a) °;
CO re

M
01 a>
s .ä
"° 9 ß °

"cu B

>> ö

43 3

4=
U

3
43
0

ai
B
O
o -
0

3
o

<U .'S O
> s* 33
1 8? s

-1** s I r, o
a)
0,15 -S a
S™ 55 ft o

ID Ä '^

"" 3 Ml " w .. 2? cu
43 _a -S oi

CO -

s £■ >>
.2 u —
re *-> s
cu

a
ft"

Ss cd 0)
a ü S 0 b£>.3
-u d *■
ft ■- 4.

(? 3 3

,2

1 " 2 o>
£ 4=

-4J
•o :=
g ^

la co 3
3 K, O tue
•-3.S

14 EH
U HV

33 w
ft oi

"O 0)

« u
01 »^

o
u •

c
0)
=
-

'5
Ö-
0)

2 >>
'&!
* .2
B T3

■rf cd
^ s-

co O

Ü >,
to "So
> B

ft s
O co

ra oi
x i—i

| s
■si

01

ii
B
CD

■+J

^ft"

f U " ^ tH x ^ oi d a;
n 3 to cc a
u O - - ■=

a-s
.2 S
a .22

* a
•n *

u
CO

OI h
.2 43
'co cd

CO ^3
H S ■ cd

cd
ß -w
O t*

re CO - re
cu cu

cd S

"3 to
3 >>

•a <"
B cd

" S3
"cd "1
.2 o 42 to

CD
43

43

a £
CU !H

ft o
o ft

o 42
CO

g m

B42
CU 43
> re
O 33
fc cu
ft t.

» Oi J3
eu •" --

ft -s
CO O

a c .
a ^ ^

g »I
3 <u re u u ra

cu s- _
co 3 O

H CJ cfi
,R 4S cu
bO 43 a
a JH re cu

B re
re > co
cu cd co

.2 9's

cu
re bo
,r, 3

CD Ä

a re
CU

0) o
T3 S

cu oi
> bfl
M 5
2 | §l u re

43
u

3
43
0

er!

X 43
cu *>

■o o
o ^

re -^
-0 s += a

2 §
5 g
S e
-w CU

SI
< ft "«. eu
• -a

3 «

CD
L.

43 4?
> a ? o

S £
CU .3
*" 3 co 3-

a

" d CU s •
CO "^
3 re

a
cu
a
o .
ft "3

I*3
u •

cu
ft ■
o ■

— t" Sfi
0

co cu
3 43

33 »

1 a
cu 5
b «

cß O
CO

o c2

CU 43
co +J ^ re

■= -7
■e ö

o.2

P "E

C3

I a o J
CO .»J
_ re
re ü

o

i* • "O
a
o

a a

'43 a
•c »
U 43

33 3
cd «

.2 O -73

3 +5 ft
cd 2 ,
^ m 01 CU CU HJ

01
ft 01 cu

»5 u
«Is
<< no £
.« to cu
43 re co

43
O

o
pa

i a
cu
o.
O

o cu
-w 43

re Q,

S t as
cd oi

— OS

E

43
O

CU
43

cu

£ 5 a u
S cu

o 'S eg U5 O

£ x E S o^
9 43 o

a co
cu 4<1
ft .2
o ■-

cu
EH

2 <~

" s 43 .2

re cu

CO

X o
43

■a
a re

d to
- a

B cu

3

ol 2
O CD

-• 5 3
73 CO

5 «

ft CU

O 2
. is

« Wre
2 3 a
8 "S .2 3 ^
2 -o re
3 EH
o '-r- cu

.^H CO (-,

33 to o
Cd g EH

S 43 «2

a
■a ™
cu .t3 .

"g.s3

7, 3 ™ CU ff) EH

^ S.-S a .2 in
3 HJ CO

+H re o
a .2 ft
a S ^ 3 S?n a
bo 2
re ° 43
a co a
re 2 u

S §{E
• re T3

cu
!s
'x

cu
Q

o
a
cu
Ü

a
.2
3

~&
a EH
CU ^^

s •- ft^

M
2 3

.3^ EH
CJ re
.2 *

o

~H EH

"5 >
cu

o
ft
ft
3

EH J3 «
CU ^= —■
cu
a

EH ~ <H
** >>3 re

cd _
3 O

.2 a
■^ a

£ 8
o u

ft a o o
ü a
5 3

I« ft o
CO M
CD U

- "2 a • re

o
•a i

8|
II

S 8
3

43

CO 0 "0
re

ft
a

X! 0 a u re ^
+H X
X a>
a
O ft EH

O CU
HH>

T3 ^O

+H ^"

re u
EH Cd
CU EH

ft 3
EH O
% Ü
.S .

cu

re
?=

cti

«a to
co X

Si
2 c
a cu c o.
x o
X

S E?
•S £
2 2

CU -T3 ft

2 S 2
re 5 ft
3 r°) 3

a ft •

KN1-8

Q
Z
D

i
o

a.
<
O
O
3

s -3
o _

a ^ -n ...■ ^

< CO
O 1.

<j
.ES 2

cc 3 _J 1 .1?
■J <
u

3
s

1»

a- r-

3

~ st;

o £ = ill 3 Qi

1 2 3 O 1
p

o o
CO

73 _ü -^

Ö
o

<
o CO

O
CO

1
X

1)

-5

c
co"

So

o
X

CO

C3S

u < 3
Ü < 3C m

c
3 5 CO

2 0)

c_
|' .=

-B
a. 1 .a

1i
X ^ o

B o

o

o o

J-

ü ZJ vi 5 Sf 5 £* £ 5 h
c p a ^> -p _rf

U

2

■■£.

o <;
O

X!

3

c
T3

* <

1 §
e Ü

^ 3

a o

g
i2

CO c

tu

■fcp

"a

CO

to

2

,5

O
'o

s

1

o
U

5 Ö
■3

£
3 o

o

5
3

O

o
o

CO

X u

§ G
ü r2

rt
ni

S

£ ■S K X CO -O Ü bC 'S *s 2 a 5

OJ *i, -

a

c
O

ß
O
U

a a

o
g -a

ß Ql

a a
o ^

2 a o

« tu Q

8 .a S
u
3

a „
a.-s
3J

«

>> o
cd1« -w 0)

US
o r
D. *? a» o
2 £

« w - -
• ^ en J3 £

ß

S
3

a; a o
u T3
u CD _L so a

3 CB

■2 B

■a g
CB -2

■a ^ QJ 0

ß "-

>>3

a cB

.§ a
CD ^

» 43
— o

CB M

S x a o a. a

Si
a^3

in CB

Rfe
.a u
MS
a u
■|J3
5 -^ p cd

ß CÄ
cd ^

CB
0) Oi

CD

9| U "O

in X
Q) 0

3 JS

§3
■? « a >

cB -r

O g

o
E
x
CB

T3
ed
eu

O CB
a «
S cd

'S -B o u

a be
0 B m a

: c OJ ^
£ OJ Ü ;s-|t
o a E
-< o

-° s
< s

3 ° ^
3 £ ^o

S s

S s 's
M T: ^

Is *
I Sä J is *

= = o c
U '5

-s. ~
O s

^^
Is

5 ö . 29

5 S en

3 5 en
CO >* ^

is ^
■■z 'c <

3 e" £
z-S 8

ft'JiS

I < ^ 1
« 9 ■ = J -n g »
P p a>

co

^ -5 ^

3 _ ^ 5 g

ä -2
< g

14
, 15 o < *> —

.s < G Ci '
S - O !

E S
ro S i- -x ^ >. rc^ ei- _ Li

rf CO CL

-5 £
13 > -^

s CJ o => <"
bC ^ O D. DU

* £ < = 'S

1-1

WRAPPING THE COTS DILEMMA

Ian White
Defence Evaluation and Research Agency (DERA)
Portsdown Hill Road, Fareham, Hants, P017 5AD

ENGLAND
iwhite@dera.gov.uk

Abstract

This paper first reviews the problems of using COTS,
notably product assurance, vulnerability and product
continuity. The concept of wrapping is then introduced.
Conceptually, wrapping is a process to mitigate COTS
limitations, and may be applied to any of the acquisition,
design and implementation phases of a system. It is a
fundamental assumption that COTS items being wrapped
are not themselves amenable to any significant changes in
their design or function.

1. INTRODUCTION

The title of the paper alludes to the common process of
'wrapping' inadequacies of COTS between added-value
services that supplement the basic performance of COTS.
Sometimes the wrapping is to add functionality;
sometimes to limit poor functionality; sometimes the
wrapping is cosmetic.

The use of commercial off the shelf (COTS)1

components as the core elements of military information
systems [command control and communications] is now
widespread, because of their availability, low cost, and
generally high levels of functionality. The military also
increasingly expect a common look and feel between IT in
the home, barracks and battlefield. However COTS
elements are produced for the civil marketplace, and
evolve in the context of a fine balance across commercial
issues of:

• cost-competitiveness

• customer expectation of quality

• customer tolerance to shortfalls in quality

• lifetime in the marketplace

• commercial through-life support needs.

• time to market
• mechanisms for maximizing a future market share.

This balance of features is substantially different from
those for traditional defence procurement, with huge
advances in technology, and brutal conditions of the

commercial marketplace, have resulting in the
unprecedented growth in the capability and lowering cost
of IT products. There are, from the military perspective,
many inherent instabilities and inadequacies in this
marketplace.

The military need to exploit COTS virtues and forgive
COTS sins. The dilemma is that good comes with some
degree of evil. The good things about COTS are taken for
granted here. For insight into the future there is plenty of
literature. For the author's views on future military
communications see ref. [1].

2. COTS ASSURANCE - THE DILEMMA

If the military are to use COTS, and there is really no
economically viable alternative in many situations, the
military needs and commercial qualities must be
reconciled. The heart of this issue is Assurance: to answer
reliably the questions, what -

• does the product do?: is it properly specified?

• guarantees are given of its performance?

• is its reliability in performing this task?
• as stand alone?
• in an inter-operating military environment (both

military and COTS hw and sw)?
• undeclared features does the product have (especially

to 'illegal' inputs)?

• is the stability of the product in the marketplace?
• its continuity of product?
■ the continuity of its function in replacement

products?

• are the implications of new functionality on previous
assurances

2.2 Manufacturers' Guarantees

Hardware guarantees are stronger than software
guarantees, but neither is very strong from buyers'
assurance viewpoint.

1 To save space, in this paper COTS is variously used as a
noun, (e.g. the use of COTS in military systems) or as an
adjective (e.g. the use of COTS components).

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

1-2

Hardware
Guarantees typically provide for remedy of

physical failures, including parts and labour, for the
guarantee period. There is no specific fitness for
purpose guarantee, although PC manufacturers make
general compliance statements regarding preferred
software systems. Whilst they give guarantees against
physical failure, they give no guarantee against design
defects, although they are often legally bound by
national 'fitness for purpose' trading legislation, and
health and safety considerations in this respect. For
the military user with a long-term interest in function,
design defects are the more important aspect.

Software
Main stream COTS software is not guaranteed by

its manufacturers against functional failures; nor do
manufacturers usually undertake to indemnify against
software failures nor to correct all software failures.
Examples of hardware and software guarantees from
mainstream manufacturers indicate the problem faced
by military systems users:

HARDWARE

Chrysler 3/36 Warranty: "The basic warranty covers
every Chrysler supplied part of your vehicle, except its tires
. . . tires are covered by separate warranty"

"The 'Basic Warranty' covers the cost of all parts and
labour needed to repair any item of your vehicle . . .
defective in material, workmanship of factory preparation.
You pay nothing for these repairs"

Typical computer hardware warranties guarantee the
hardware product against defects in materials and
workmanship for a period of one year from the date of
original purchase.

SOFTWARE

Software warranties are far poorer, typically disclaiming any
liability for their use, nor giving any specific undertaking to
correct faults that are discovered.

Why are guarantees so poor, especially for software?
In the next section the expectations for software and
hardware assurance of function are examined.

2.3 Software Assurance

The problem
The problem is that software now is like

architecture in medieval times.

"If I were to build a bridge, I would, by using classical
stress analysis, have figures for strength, elasticity, and a
variety of other predictive capabilities to tell me how to
build it. If my bridge design was wrong, it would probably,

even during building, become evident that something was
wrong.

If I wish to build a large software system - the bridge from
the concept to the action - I have very little in the way of
theory to do it. Building a software intensive real-time
system is a task for which we have few exact tools and no
fully effective means for predicting its performance. " [2],

Closed Source Software
Many common software products, for example

office aids, operating systems, and compilers, are
complex programmes typically of several million lines
of executable code. Current software evaluation
technology is not able to formally test such software
for the conformance of its functionality against
specifications, and often such detailed specifications
are not available. Nor are specification methods
sufficiently strong to ensure that specifications are
themselves either complete or consistent. The primary
COTS software testing process is:
<beta test using knowledgeable users, and revise>
then <sell and take customer feedback>
then <prioritize faults against cost/marketplace

need>
then <revise, and issue marketplace patches2>.

It is commonplace for such test programmes to
uncover literally thousands of faults. This is the
number of known faults corrected, not the total list!
The manufacturers' versions of the latter lists are not
normally published, although WWW listings by user
groups are common. Furthermore, virtually all
commercial software products are delivered as
compiled code tied to a proprietary operating system.
The source code is not available; it is subject to
neither third party peer amendment nor review.

It appears that the fault rate of large software
programs:

• is never amenable to any analysis to
determine its extent

• is a linear function of the number of skilled
users who apply it.

The significance of faults is difficult to quantify, since
a minor fault for one user, may have catastrophic
consequences for another.3 What is evident with large
COTS software products is that system failures caused

2 i.e. short blocks of replacement code for aspects of
the SW that did not work correctly.
i The Excel bug in which one specific number was
incorrectly represented internally is an example (i.e.
1.40737488355328, = 0.64; several related numbers
also fail), Risks digest [3], Vol. 15, no 39.

1-3

by various known and unknown fault states are
commonplace. A source code bug rate of 4 bugs
/Kloc4 is a commonly cited number [3], however this
would imply that popular PC operating systems,
which range from about 8 to 64million lines of
executable code initially have circa 32,000 to 256,000
faults, which is not realistic. Most faults are excised in
development and beta testing. The point is that even
with fault rates orders lower than this, the residual
fault rate is not trivial.

This commercial development model poses serious
questions for users requiring functionality with high
integrity. Whilst a judgment may be made on integrity
after some initial bedding-out time, it is not in itself a
guarantee of performance. The Windows 3.11®
product is old but reasonably stable. The problem of
this strategy is that such products are not supported for
more than a few years, and W3.ll® is now entering
this unsupported threshold5. Unfortunately,
manufacturers give no guarantee that the later
products will be as reliable as the older ones.
Generally they are not, because they are less well
tested, and have additional functionality, less well
tried, and sometimes unwanted.

The arena of reliable software is still a meagre
green patch in the wide range of commercial software.
Whilst there have been significant advances in the
development of formal, and quasi-formal methods,
their application still remains limited, mainly to
relatively small programs, for overtly safety critical
functions such as avionics fly-by wire functions.

Open Source Software (OSS)
The use of open source software, developed

collectively by 'hackers'6, allows a review process not
just by users, but by programmers and users, who all
have access to the source code. This level of scrutiny
produces some excellent code, which is potentially of
a substantially higher quality than closed source
software. Military procurers have traditionally been
rather wary of the culture of open software
programmers and users. Ironically it could prove to
be a more reliable source than proprietary products.
Strong interest is now being shown in the open
software UNIX ® operating system LINUX ®, which
performs well, is well supported (including by some

4 Kloc = 1000 lines of code
5 It is many manufacturers' stated policy to only
support the current and the previous release of
software products.
6 Not the colloquial meaning, but referring to software
aficionados who devote their lives to developing open
software.

commercial organizations), and is gaining ground due
to a strong degree of dissatisfaction with proprietary
closed source products in some sectors of the
operating systems marketplace. Perhaps even more
remarkable is the success of Apache, which is the
widely used Web server software. This is a function
requiring very high reliability, which the OSS process
has clearly achieved.

2.4 Hardware Design Assurance

Chip Design
The design of complex integrated circuit chips is

also extensively supported by software processes.
Because the implications of a failure in the chip
design are severe, with one chip design being
manufactured in millions, the manufacturers take
considerable trouble to ensure that the functionality is
sound. This includes a wide range of emulation
testing. Notwithstanding this, errors do occur, a
notable example being Intel with its early Pentium ®
chip, which had a arithmetic processor error. The
elementary functions of a computer chip are grounded
in mathematical processes and operations, and the
functionality of processors is a more constrained
domain that the full spectrum of COTS software.
Because of these factors chips, from both design
integrity and physical reliability viewpoints, are
normally orders better than software, although faults
do still occur.7 This allows us to conclude that:

For most military systems,
the degree of assurance in chip designs from

major manufacturers is adequate.

2.5 Vulnerability

The problem
The limitations of testing and completeness of

function of COTS systems has been discussed.
Associated with these weaknesses is a huge user and
player community on the WWW, that disseminates
information on system weaknesses, their cures, and of
course the malicious exploitation of known
weaknesses for disruptive purposes. Notable
weaknesses of COTS, cited in [4], are:

• easier for non-specialists to make intrusions

• low-cost solutions ignore stronger protection
issues - security, integrity and EMC.

• COTS are more vulnerable to viruses, Trojan
Horses, Easter Eggs etc. due to the wide

7 The command fö Of c7 c8 causes the Pentium
processor to halt; recovery requires power-
down/power-up (Risks Digest, vol. 19/45).

1-4

dissemination of information on these over the
Web.

• conformance is difficult to establish with
systems needing frequent patches to remedy
defects.

• low COTS price, and rapid 'time to install'
creates procurement pressures to adopt COTS,
even if the full extend of vulnerabilities is not
clear.

• maintenance for COTS creates some potential
problems in battlefield situations.

• unanticipated inter-system interactions

• accidental, or deliberate intrusions or erroneous
functions.

A fascinating and extensive catalogue of these are
presented in the Risks Digest web pages produced by
the ACM [4].

Vulnerability Tests
Tests on COTS products can be 'black box' or

'white box'. The latter is where all details of the COTS
item are available (software listings, specifications,
performance results etc.). Clearly for COTS a black
box approach is more realistic, although few black
box tests are available for COTS testing.

Enhancing Robustness
Information warfare (IW) protections include

increasing system diversity to provide resilience, and
as a way of making any focused analysis of system
weaknesses more difficult. This is of course counter
to the main stream of COTS development where at
any one time there is normally a dominance of a few
or even one product for key functions.

3. WRAPPING THE DILEMMA

3.1 Principle

If the military are to use main stream products how
can they do better than supinely accept the poor
quality assurances, and vulnerabilities of commercial
software? We cannot give any strong dictats to
manufacturers, and so must somehow 'wrap the
dilemma'. The wrapper lets the good things through,
and traps the bad things. That is the principle; the
practice is however very limited.

Military Environment

FIGURE 1 - Wrapping COTS Functionality
The diagram illustrates the idea; the questions are:

• what needs wrapping and why?

• who produces the wrapper?
Wrappers fulfil two principal functions

• They trap poor or dangerous performance
features (i.e. provide better assurance)

• They specifically enhance existing performance
A wrapper can be considered to be any, or all,
of:

• An additional acquisition/procurement test
• Additional software

• Additional hardware.

3.1 Wrapping the Acquisition Processes

Product validation
It is possible in principle for the military buyer of

COTS to test it himself to derive his own assurances
of performance. This process is both difficult, and
liable to be invalidated by the frequent changes made
by manufacturers in their COTS products. Evaluation
techniques include reverse engineering of closed
source software, and using open source software,
subject to certain tests. There are very few validation
test suites for COTS systems. The primary source for
such tests are national conformance testing centres,
whose tests are primarily aimed at establishing
standards compliance of systems interfaces.

Reverse Engineering
One possibility with some products is to reverse

engineer from compiled code to evaluate the overall
systematic functionality of the product. Although this
is possible in principle, it has little general application
because:

• for most programs it cannot be done
economically8

• for large programs it cannot be done at all

• even if feasible, the scale of the analysis would
require extensive resources to apply the tests

• any changes made as a result of such tests would
• not be subject to any form of fault support
from the manufacturer
• probably be a breach of the manufacturer's
copyright.

An alternative assurance strategy is to negotiate
confidential access to the source code. For major

8 One of the main targets for reverse engineering are
computer viruses, which are normally quite small
programs. Even these can prove difficult to analyse in
this way.

1-5

COTS products most manufacturers see no
commercial benefit in this, when set against the risks
of their code confidentiality becoming compromised.
Because major products are developed by large teams,
at substantial expense, external assurance audits will
require similarly large skilled teams. Accordingly a
careful cost/benefits analysis for such assurance would
have to be made. This leads to the second strong
conclusion that:

In general reverse engineering is not practicable.

Exploiting Embedded Systems Software
Software for embedded systems is produced to a

generally higher standard of reliability than for most
software applications. Furthermore its design gives
much more attention to economy of storage and
processor demand than does general user software.
One illustration of this is embedding Windows.
Microsoft's Windows CE {WinCE ®) is a compact
operating system, with some attractive 'military'
features.

"While the industry trend (in OS's) is for successive OS
releases to require even more hardware resources in terms
of processing power, RAM, and disc space, WinCE has been
written from the 'ground up' to operate with only the most
basic hardware requirements "

Traditionally, Microsoft OS are supplied as a core kernel
associated with a large number of supporting services, such
as file systems and network support, all in a monolithic
chunk. All these supporting services need to be stored on
disc and loaded into RAM whether or not they are required
by the applications running. The functionality available can
be modified by adding or removing drivers for hardware
options, but the kernel or removal of a service from say
Windows NT®, would cause system malfunction with
potentially disastrous consequences. Furthermore this
would be considered a breach of the licensing agreement
between the end user and Microsoft!" [5]

The virtues of a system built over a monolithic
operating system are numerous and include:

• functionality limited to only that which is needed

• economy of required platform functionality
(RAM, disc processor speed)

• far easier to configuration manage

• easier to undertake user driven test and
evaluation of reliability/integrity

• deeper understanding of function available to
user

• easier to assess vulnerability
• easier to apply formal or quasi-formal

integrity/consistency tests to overall function.

The drawbacks are:
• less readily available range of functionality

• more expensive to develop
• may be difficult to expand to match the full

range of the monolithic OS.
There are no standards here. The EPOC®9 embedded
operating system from Symbian (a joint venture
company of Psion, Nokia, Motorola and Ericssen) is
also a strong contender in this marketplace. The
Symbian consortium is now attracting a very
substantial international company following, and is
seen as a major competitor to Microsoft's WinCE ®

[6].

Safety Critical Requirements
If software must fulfill a safety critical function,

then it must be structured for this task, and also run on
high reliability hardware platform/s. We can take
some ideas from fault-tolerant systems, for example
running 'equivalent' software on different machines to
provide parallel answers to important questions. In
some cases running a hot standby can protect against
hardware or software failures. These options require
very high integrity choice mechanisms such as
<majority voting on three processes> evaluations, or
<failure detect - switch to standby>. The former
requires that the same process is implemented (coded)
in different ways to achieve some degree of
independent failure mode. With COTS this is not
generally possible, although some investigations have
been made on the use of Unix systems from this
perspective. These techniques are approximately
three or two times respectively more expensive than
stand-alone, and similarly more expensive to maintain.
They may not be a cost effective solution for many
defence support roles, but if COTS must be used for
defensive critical roles, including much of C4I, then
these options need to be considered much more
seriously.

Unfortunately very little software written in the
COTS marketplace is evaluated against these sorts of
criteria. Nor are such results published as part of a
assurance certification. This leads to the strong
conclusion that:

Safety critical (SC) software cannot be provided
from mainstream COTS. However more
reliable software can be made using SC

principles.

3.4 Architecture and Standards as Wrappers

9 The name EPOC derives from the abbreviation of
epoch, as this was regarded as being a new epoch in
Portable Operating Systems.

1-6

"The difference between doctors and architects, is that Architecture mandates do not address the problems of
doctors bury their mistakes " using COTS in military systems.

Edward Lutyens (British architect).

Architecture mandates are the wrappers around the
system design process. It is a cherished belief in
military planning and procurement organisations that
they can collect standards into a compendium, and
even the relationships between standards, e.g. in
profiles or structured APIs, and order the world to do
their bidding. However to be effective an
Architecture must meet the following conditions:

1. It must advocate a sufficiently precise set of
standards, and related implementation processes

2. There must be a general community (industry,
procurers, users) acceptance that these
mandated elements are reasonable

3. It must be enforceable through indirect and
evolutionary mechanisms as much as by
policing.

4. It must be kept up to date
5. the procurement process must be matched to the

timescales of the elements advocated within the
architecture.

Historically many aspects of these mandates fail,
often not through inadequacies in the standards
themselves. The pace of COTS development, as part
of this scenery, renders such mandates suspect. Using
COTS has severe implications for those who seek to
mandate procurement standards in IT. A fundamental
reason is the standards generation process. To
determine, write, and apply a new standard requires
much discussion between peer experts, practical
evaluations, refinements, and much deliberation over
the writing of the standard to make it as clear and
unambiguous as possible. This is inevitably a long
process. There must be implementations those
standards, which may be inimical to some companies'
commercial objectives.

An Architecture mandate seeks to aggregate such
standards, and in effect becomes a meta standard for a
chosen set of systems (e.g. defence IT systems). It is
axiomatic that to undertake this task requires a range
of expertise that is both technically wide and deep.
Defence architecture teams are never greater than a
few people strong, they all have some technical
weaknesses, and as the objective is an aggregation of
standards, a full understanding of their interactive use
is needed. In IT, this process is further aggravated by
the rapid rate of change of products, usage styles and
the continuous emergence of de-facto standards. This
will always raise questions about the rational of any
defence architecture mandate. Hence,

1-7

3.5 Wrapping COTS Products

Detecting faults and undefined states
Apart form seeking assurances that the product

does what it should, there are also many weaknesses
in products when they are used in ways that are not
within the specification. Such 'out of range' states may
be entered by accident, or by malicious design. COTS
products are different from bespoke designs. Some
manufacturers produce quite detailed specifications,
others do not; some even charge for additional
information describing the product. Most consumer
software for example comes with no written
documentation, other than installation instructions,
licensing dictats, and installed 'help' facilities, that are
often poor. The handbooks describing the product are
an additional secondary market. No guarantee given
that such descriptions are complete or fully accurate.

In addition, products often come with undeclared
features (Easter eggs), that are used by the developers,
and which the vendor may not wish the customer to
access. These may be left for maintenance purposes,
or as a deliberate act of configuration control ("this
version passed acceptance tests just in time so don't
change anything else!"). Such additions may even be
gratuitous, as with the flying game in Microsoft Excel
®10.

If we are to use such products in defence
applications we need to know a lot about their
behaviour. Apart from faults where the application
does not do what it should, for a legal input parameter
set, there are always many inputs sets which are
illegal, and for which the system state is undefined.
Note that manufacturers normally do not consider
such results to be faults. Such states often cause the
system to crash, so for any high reliability system
these states need to be trapped. The scope for users,
and hosted applications to invoke such values is
evidently high.

We have already discussed design type checks on
the procurement of systems. A better approach is to
embed such COTS elements within some form of
wrapper. The technology of wrapping is still
developing, and is one where the military R&T need a
greater and more strategically determined focus. The

10 To access this game on Excel-97 : open a new worksheet
and press F5; in dialogue box type X97:L97; click OK;
press tab; Press Control-Sh AND click Chart Wizard.
Excel's Mountain World is revealed, and upon one of its
peaks is a list of credits for usability testing! The game in
Excel 95 is more elaborate. In Powerpoint-97® select
Help/about Microsoft Excel; click the Powerpoint® icon in
the dialog box; a list of the programmers appears.

standard way of testing a process/equipment is by
black box testing, where it is accepted that its detailed
inner workings are not known. Performance is based
on the interpretation of the relationships between
inputs an outputs.

Black Box Testing - CMU's Ballista
A common problem with many operating systems

is that parameter entries are not properly delimited.
The extent of this problem is nicely illustrated by the
work done by Carnegie Mellon University (CMU) on
the Ballista Project [7], [8]. This project exploits the
fact that many system crashes/lock-ups are caused by
illegal values of module parameters. Accordingly they
determine a parameter range for each operating
system (OS) module (both legal and illegal values)
and then test these, both individually and in nested
iterations, with combinations of these parameter
values.

It is part of the Ballista philosophy that the code
for the module under test (MuT) is not available. Each
module is characterised only in terms of parameter
and data types required. Failure is defined informally
according to user accepted crash/lock-up conditions.
No special test harnesses/scaffolding is needed. "The
set of test cases used to test a MuT is completely determined
by the data types of the parameter list of the MuT and does
not depend upon a behavioral specification. "[8].

Ballista has been used to evaluate POSIX OSs by
testing 233 different POSIX calls. Input parameter
values applied over all value combinations over
various POSIX OS systems showed an average failure
rate of about 15%. (i.e. failure count/{no. of input
parameter combinations attempted}). The lowest rate
was 10% for AIX 4.1, the highest 22.7% for
QNX4.24.

Knowledge of these failure states can be used to
define a wrapper that traps known illegal values, or
even legal values, which cause failure. If the test
results used for figure one are re-evaluated with all
non-exception (legal value) tests removed, the
resulting normalised failure rate is nearer 30%.

Using the diversity of these different OSs to
provide a more robust response has also been
investigated but shows little advantage unless a high
level (many OSs) are used.

A wrapper family based on these results is
currently under development by CMU. Although there
may be speed penalties imposed by the use of
wrappers, the reliability of the operating system can be
dramatically increased.

1-8

AIX4.1
DUNIX3.2
DUNIX4.0

Free BSD 2.2.5
HP-UX9.05
HP-UX10.2

Irix 5.3
Irix 6.2

Linux 2.0
LynxOS 2.4.0
Net BSD 1.3

QNX4.22
QNX4.24

Sun OS 4.1.3
SunOS5.5

10 15
Normalised Failure Rate, %

20 25

Figure 2 - Ballista Testing: Posix System OS 'failure' rates1

It is salutary to note that as many
manufacturers argue that such exception inputs
are not faults, but user mistakes, they are not at
fault. The corollary to this is that manufacturers

may not include such states in their bugs
databases, and may make little or no attempt to
correct them.

3.6 Adding Functionality

Principle
Often in military systems the basic

functionality provided by COTS systems is
inadequate, or even non-existent. It is often
possible to wrap a to COTS product, or service,
with additional equipment to provide the
additions required.

Crypto
The commonest military example of adding

functionality is that of cryptographic devices.
For example several ISDN cryptos are available
that wrap the ISDN 2B+D channel, applying
serial cryptography to the 2B stream, and
applying signaling filtering to the D channel to
prohibit data transmission and to constrain the
range of signaling allowable.

The NATO KG81 applies a similar
encryption to El (2Mbits/sec) trunks.
Cryptographic devices of this type are both
logical and physical wrappers.

Software insertion
Software wrapping, for example between a

communications protocol and the API poses
more significant problems, because the logical

11 (from ref [8], courtesy Professor Philip Koopman, CMU Ballista Programme).

1-9

boundaries of software are less well defined, and
more readily covertly subverted, there is far less
confidence in the minds of security accrediting
authorities about the use of software insertion
mechanisms. This can be mitigated by related
physical separations, for example dual
processors, with accredited inter-links.
Unfortunately this suspicion is not reflected in
civil manufacturers' designs, so that security
wrappers are often GOTS items, produced and
distributed under specialist controlled conditions.

Physical Robustness
Another common need for additional

functionality is to provide physical robustness, by
additional packaging of equipment and by
screening to mitigate the effects of radiation and
Tempest. This is perhaps the original wrapper.

Enhancing, performance
In some military applications the performance

of COTS systems may be broadly what is needed,
but with poor performance. Current IP routers, and
ATM switches have poor performance in the
present of data transmission channels that have
poor error rate performance. This latter feature is a
common characteristic of tactical military
communications. To enable COTS products to be
used frame and cell hardening is needed, whereby
the link error rate is improved by error correction
coding. This allows the commercial switches to be
used, without any modification. There are now
several products on the open marketplace that
perform ATM Cell Hardening, including Comsat,
SRC, Thompson and Marconi.

BO

s
«3
ä5

p.

1 S_L/B

ISDN Crypto

bß a
V* 1.

3
& c

. r—

00

z

ISDN Crypto

Figure 3 -- ISDN Crypto 'Wrapper' for 2*64 + 16 data channels

HI* 0 <

3.7 Interoperability Standards

Wrapping Military Legacy
Interoperability Standards exist in both the

civil sector and NATO. An inverted strategy can
by taken within military systems by wrapping
them in a civil standard interface. This is being

done with some systems adopting the various
ISDN interfaces for military systems interfaces.
For network management interfaces the process of
wrapping legacy capabilities with common object
interfaces is also being pursued.

1-10

There are a number of exciting developments
in the civil sector on interoperability, all of which
offer wrapping opportunities for military IT
systems. Common examples are the use of ISDN
BRA and PRA interfaces in military systems, the
use of HTML web page based interfaces between
systems (e.g. for network management), and more
promisingly the use of CORBA techniques for
integrating a wide range of legacy and proprietary
systems.

Civil Environment

Figure 4: Wrapping Military Legacy, to Civilize it

Interoperability Opportunities
An interesting idea within the interoperability

domain has been to develop a protocol language
which allows 'on the fly' translation between
protocols. This idea now has a real instantiation
with the introduction by Sun Microsystems of the
JINI ® concept. Here different computer devices
are able to tell other elements in a computer
network just what they are, and what they can do,
using Java as the basis for this dialogue. A further
development is to apply this idea not just to
computer system interactions, but to a wider range
of electrical elements. Wireless interconnection of
these elements is within a programme called
Bluetooth [9]. It provides wireless
communications between element at ranges up to
10m, using an unlicensed region of the radio
spectrum. In the office world this would link not
just computers, but a very wide range of
equipment, fax machines, telephones, shredders
etc. In the home this linkage would be to all
electrical equipment, the television, cooker, fridge,
toaster, etc to advise the owner of the state of his
home. It is the management infrastructure for the
intelligent environment.

System management capabilities, deriving from
the wide ranging work on enterprise resource
planning/management, and the Telecommunication
Management Forum's work on process definition,
are further examples of opportunities for
establishing usable military interfaces.

4. STRATEGIES FOR SELECTING COTS

4.1 Military-Civil Convergence

Mobile data services
What starts life as a 'Military Feature' in time

often becomes a civil one. The need is for 'the
office in a pocket', leading to increased data
capacities for mobiles as well as more standardised
forms of compact file structures for office utilities,
for example 'lean' web page formats.

Security
The internet serves several hundred million

subscribers, mostly without significant security
features. This is a great untapped marketplace,
since much of the internet will ultimately require a
range of security services for its transactions,
notably e-commerce both business to customer
(B2C) and business to business (B2B). Already the
ubiquitous virus has led to vulnerability protections
becoming widespread.

Security mechanisms are now widely
understood in the open literature and the knowledge
is worldwide. Even unbreakable codes are readily
within the reach of even modestly sophisticated
users. The result of this strong drive towards
powerful security will lead to a convergence of the
civil and military security communities.

4.2 Which Products?

Four Key Questions
Clearly COTS products should be chosen

because they perform a function that the military
needs. The questions to be asked are about
assurance and vulnerability, thus:

• Can the product be tested for (what it should
do, and for what it should not)?

• Can it be replaced?

• Will it inter-operate with other
systems/elements?

• Can it be wrapped without any internal
modification?

It is a new challenge for military R&D to
determine what research is needed to understand
and best exploit the COTS marketplace. Since the
marketplace overall is immense, an in-depth
coverage is simply not feasible. So what should be
studied? The focus must derive from both military
functionality and procurement concerns such as
those listed above.

Systems Integration
Many of the preceding issues have been

concerned with understanding the function and

1-11

performance of specific COTS products. To
create systems comprising these elements requires:

• a design process
• systems integration and testing
• through-life support.

Each of these processes is different from those of
old, where the design, even of much of the
hardware, was bespoke. Specific performance
limits, the implications of the changing COTS
products in the time between design and
integration, require that the process is much more
fluid. Paul suggests that the dynamic pace of both
requirements and technology invalidates many of
the current design paradigms. There is a need for a
developed concept of 'living systems', and design
and support mechanisms to relate to this idea,
rather than the idea of the system as a gestation
aiming at a future 'fixed point'. He argues that the
concept of a target 'fixed point' that the designers
are trying to achieve is an obsolete, and dangerous
concept within IT systems [10]. Certainly there is
much to be said for integration being considered as
in integral part of the design process, and the
system itself being structured to permit its'
evolutionary development.

A useful 'lessons learned' summary of COTS
integration experience is given by Fox and Lantner
[11]. A summary of some of their points is:

• COTS design results naturally in accelerated
development, which precipitates an early start
of integration testing.

• To be able to undertake integration testing
test harnesses of various sorts are needed to
simulate various aspects of the operational
environment. The development of these can
be a serious cost and time constraint.

• Maintenance on identified problems is by the
COTS vendor, and may not meet the
integrators needs. Problem investigation and
identification and major parts of the
integration task.

• the systems integrator must understand how
products are configured (configuration files
for specific products need to be rigorously
controlled).

• Through-life support for COTS requires
planning for replacement elements, at frequent
points in the life-cycle, and this requires very
strong configuration control.

5. ACKNOWLEDGEMENTS

This paper builds on earlier NATO 1ST
contributions on the use of COTS by John Laws,
Randall Schumaker, Major W. Tack, and various
discussion and papers from within the UK's
Defence Evaluation and Research Agency (DERA).

6. REFERENCES

[I] White, I, Future Military Communications - A
Preview, unpublished paper.

[2] White, I., Science in C3, Friend of Foe, Joint
Director of Laboratories Conference on C4I,
Monteray, Cal. USA, 1994.

[3] Smith, C, Win2000, 63000 Bugs, Risks
Digest, ACM publication; 19 July 1994, Vol.
20, no 80 (see also 81 and 82): all volumes
available on the Web at:
http://catless.ncl.ac.uk/Risks

[4] Tack, W., Maj., C4I Vulnerability Using
COTS, 1ST Panel; 'Issues' Paper, Oct 1998.

[5] Watts, C, Embedding Windows, IEE Review,
November 1998.

[6] Overview of EPOC, http://www.symbian.com/
tech/papers/overview/overview.html

[7] The Ballista Project, Carnegie-Mellon
university, http://www.cs.cmu.edu/afs/
cs/project/edrc-ballista/www/

[8] Koopman, P., and De Vale, J. Comparing the
Robustness of POSIX Operating Systems, 29th
Annual International symposium on Fault
Tolerant Computing, 13 - 18 June 1999,
Madison Wisconsin, USA.

[9] Overview of Bluetooth,
http://www.mobilebluetooth.com/

[10] Paul, R., Why Users Cannot Get What They
Want, ACM SIGIOS Bulletin, Dec 1993, Vol.
14, No 2, pp 8 - 12. (also on University of
Brunei (UK) web site).

[II] Fox, G. and Lantner, K. W., A Software
Development Process for COTS Based
Information System Infrastructure,
http://www.stsc.hill.af.miy crosstalk/1998/apr/
process.html

© British Crown Copyright 2000 DERA.
Published with the permission of the
Defence Evaluation and Research Agency
on behalf of Controller HMSO.

2-1

The COTS IT Circle

Alex Weiss,
Defence Engineering Group, Department of Mechanical Engineering,

University College London,
4th floor, 66-72 Gower St, London, WC1E 6BT, United Kingdom.

e-mail a.weiss@ucl.ac.uk

An examination of the issues raised by using COTS IT in
operational military equipment, the decisions that need

to be made and who has to make them.

The COTS IT Circle shows the issues raised when using
COTS IT in operational military equipment. It looks at
the decisions to be made and shows who has to make
them. It starts by examining the main operational issues.

The COTS IT circle
COTS IT in operational military equipment

Alex Weiss
Issues

Decisions

and who
makes them

Operational considerations
There are a number of operational factors that need to be
considered at the start of any project. Four of them are
particularly relevant to the utilisation of COTS IT.

Operational considerations
Safety Implications. Mission critical. Design life. Security
Environmental specs. r

Issues
Traceability. Rugged-
ness. Hackability

Operational use
Static - Protected -
Unprotected.
Embedded in sensor.
- Air/space borne
- Ship borne
-Vehicle borne
- Man carried
In weapon:
- Single shot
- Repeat use

MTBF&
MTTR

Support-
ability

vf^^,.mmuMMJ Complexity.
Operationa ^Availability
Requirements

Safety implications
Does the use of the equipment have any safety
implications and is it classified as a safety critical
system? Such criteria demand the provision of a safety
case; something that is difficult with a COTS IT-based
system. Traceability is one of the key factors missing
from virtually all COTS IT and there is little indication
from the main suppliers that this situation is likely to
change.

Mission critical
While the equipment may not have a safety role, it may
well be critical to the completion of its mission. Such
roles include COTS IT embedded in key sensors and
weapons. Clearly, duplication of low-reliability parts
rapidly increases the chances of successful functioning
throughout any mission.

Total design life
The length of the design life of almost any piece of
military equipment is far longer than for most of its
civilian counterparts. A few aircraft and ships may
remain in service, after a mid-life update, for as long as
fifty years and a period of twenty-five years is
commonplace. COTS IT, on the other hand, is
obsolescent in eighteen months, obsolete in three years
and mostly replaced within four years, even by the most
cost-conscious users.

Interoperability
Interoperability mainly revolves around the question of
standards and in the case of COTS IT, these are largely
de-facto standards. However, experience with popular
programs such as Microsoft Office shows the difficulty
of interoperability between different versions of the
same programme. The problem may become
significantly harder and more expensive to deal with
when upgraded COTS software has to interface to
custom military hardware with an interface to the
original version of the COTS software.

Operational use
The type of operational use will affect the type of
requirements facing any COTS IT used. Almost all
military equipment may experience a wide range of
different environments depending on the particular
application.

While, historically, defence specifications have
carefully defined these different environments, COTS IT
has had less care taken in specifying the environment in
which it is to be used and suppliers to the military have
made extensive use of wrapping to protect what would
otherwise be very vulnerable items. The main area of
COTS hardware differentiation has been between
portable battery-powered items and mains-powered
static ones.

Static
By far the most benign environment is that which is
static and protected. Examples include COTS IT
installed in permanent defence ministry buildings and in
headquarters bunkers. More demanding is the use
equipment in a static but unprotected environment.
These are increasing found when the armed forces are
deployed overseas and will locate equipment in existing

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

2-2

buildings that may or may not have central heating, air
conditioning or sealing from damp, dirt and dust.

Embedded in sensor
Sensors themselves may require some or a great deal of
IT to function successfully. At the top end are the
requirements of electronic warfare sensors, while at the
bottom end are relatively simple sensors such are
thermal imagers. The embedding may well take the form
of wrapping, but consideration also needs to be given to
the likely deployment of the sensor. Big air defence
radars are unlikely to be moved, while a sonar buoy may
have to withstand impact with the sea when dropped by
an aircraft, not to mention exposure to the maritime
environment.

Air/space borne
The nature of the unprotected environment in aircraft is
severe. Low temperatures and pressures are often allied
to high vibration and 'g' levels. There is, however,
increasing pressure on the aerospace industry to provide
pressurised, temperature-controlled compartments for
avionics equipment, which is then mounted on suitable
anti-vibration mounts.

The situation in spacecraft can be even more severe.
Not only must the equipment survive the launch, but it
must also cope with the wide range of temperatures,
vacuum conditions, micrometeorite impacts and various
types of radiation found in space.

In both cases, weight and volume are major
considerations as are heat generation and power
consumption; the last particularly in space applications.
Furthermore, in aircraft, the production of poisonous
fumes in the case of fire in the air must be avoided for
the safety of the crew.

Ship borne
Areas of problem for COTS IT arise on board ships and
submarines for a variety of reasons. The first is the
presence of a salt-laden environment. Low frequency of
vibration is a particular issue and equipment must be
able to survive exceptional levels of shock should the
vessel be hit by enemy action. The generation of smoke
or poisonous fumes must be avoided, particularly in the
case of submarines. While power consumption is less of
an issue than in aircraft, the generation of excess heat
below decks often calls for a water-cooled heat
exchanger. A particular issue is the need for mission
availability, which can be for 90 days or more, relying
only on on-board support for maintenance.

Vehicle borne
Any equipment installed in a vehicle leads a tough life.
Exposed to the ravages of the weather, it is also expected
to survive very high levels of shock and vibration.
Maintenance also usually takes place in a less than ideal
environment.

Man carried
Any man-portable equipment has to survive a large
degree of rough and tumble, particularly in wartime. The
elements, dust and mud, being dropped or thrown into a
vehicle are all the lot of man-portable equipment. Size,

weight, silent operation and low power consumption are
important issues.

In weapons
Weapons include guns, rockets, guided missiles, mines
and torpedoes. Almost all experience serious stresses at
launch.

Single shot
Any single-shot equipment must operate the first and
only time that it is used after a storage period that may
last for decades. The increasing trend towards 'sealed'
rounds avoids any checking or maintenance.

Repeat use
The repeated shock on any item of equipment that is part
of a multiple-firing weapon system is bound to be
severe.

What COTS IT is available
People working in defence ministries and for defence
contractors are finding it increasingly difficult to keep up
to date with what is being offered in the market place.
The main reason for this is that the range of products is
increasing rapidly as the market grows and this is allied
to speedy product obsolescence; the result of the rapid
changes in technology.

Military
[Procurement ■
[Prime
[contractor

Potential to
use COTS IT
Hardware,
software or both

What's COTS IT is
available?
Continuing
obtainablity
Company
assessment &
long term future.
Getting
companies to bid.
Competition

Company assessment & long term future
Many commercial IT companies are both young and
small in size. Some like Microsoft are enormous, yet still
relatively young. Most are following the industry norm
and growing very fast. Few are located just in a single
country and it is commonplace for the larger companies
to sub-contract work to employees in countries like
Russia and China. This implies that either a defence
ministry or its prime contractors must manage these
predominantly overseas suppliers, with the risk that
support may be embargoed in times of tension or war.
As for the long-term future, who in 1980 would have
predicted the fall from the top spot of IBM?

Getting companies to bid
The commercial IT market is huge while the military IT
market is very small; representing only one percent of
the total. This, in itself, is not a great incentive for
commercial companies to bid for military work. The
attractions of bidding are further reduced by the

2-3

aggravation involved in the bidding and contracting
hurdles put in place by government military purchasers.

Competition
There are monopolies, or near monopolies in some areas,
and the dominance of Microsoft and Intel in the software
and microprocessor markets is well established. This can
mean that it is sometimes hard to find true competition
and this gets worse, once a project is locked into a
particular IT solution. In the case of hardware, there is a
plethora of 'IBM PCs' but the performances of these
look-alikes is by no means the same. Nor are they
necessarily always suitable in terms of form, fit and
function.

Continuing obtain ability
In the time from deciding the content of a tender to the
award of a contract, an item of COTS IT hardware or
software may no longer be available. A year is a long
time in the commercial IT industry, but only a short time
in the military acquisition process, the more so if
platform (ship, tank or aircraft) time scales are taken into
account. It may well be that the COTS item can only be
obtained as an upgraded version, which may or may not
meet the requirement. It is difficult to keep up to date in
terms of knowing what COTS IT is on the market and
matching this against what will be needed. For some
military requirements, 'Milspec' equivalents will be
essential and COTS IT may not be able to be wrapped or
otherwise modified to meet these requirements. In these
cases, it will be essential to fund specifically these
military areas of IT.

Potential to use COTS IT
It is at the earliest stage that a decision must be made on
the possibility of using COTS IT. Such a decision is
likely to impact back into the equipment specification,
which must reflect its proposed use.

Military Procurement -j
j Prime contractor

Interoperability. Interfaces.
Modifications to COTS

hardware/software

Contract
issues

Cost. Delivery

Contract terms/
conditions

Delivery
The delivery time of COTS IT is remarkably short. It
may often be literally off-the-shelf and may, in any case,
be too quick for the purchaser. On the other hand, it may
no longer be available when required. Continuity of
supply and build standard are both issues that cannot
easily be resolved. Furthermore, once the COTS IT has
been delivered, there may be significant system

integration problems, both in terms of the need to protect
hardware, and in both hardware and software interfacing.

Cost
There is no doubt that bespoke systems are now largely
unaffordable from the current levels of defence
equipment budget of the industrialised nations. There is
a significant cost of testing COTS IT to prove that it is
'problem free', and this may need to be added to the
actual purchase price. It should be noted that the US
DoD is carry out a great deal of COTS IT testing at its
own expense.

The life cycle cost implications of using COTS IT are
largely unknown because no major platform or system
has had time to pass through more than a fraction of its
life since COTS IT started to be used.

Competitive policy tends to be anti-COTS IT, since
once a particular supplier of, for example, some software
has been chosen, that supplier will be the sole potential
supplier of software upgrades.

Modifications
COTS IT is available at remarkably low prices for
standard items, though these low costs rise to ridiculous
levels if modifications are demanded. It is clear that the
initial operational requirement must reflect the potential
for COTS IT use if major modifications to standard
items are to be avoided.

Interoperability and interfaces
The need for interoperability between different COTS
IT-based equipment and between COTS IT-based and
bespoke military equipment is largely an issue of cost.
Careful though about the use of interfaces early in any
programme is key to minimising costs at later stages.

Contract terms and conditions

The terms and conditions of contract offered by defence
ministries are not attractive and are often unacceptable to
COTS IT suppliers; and this is particularly true of IPR.
With most COTS IT suppliers located in the US or
Pacific Rim, these firms are usually reluctant to send a
negotiating team to another country for what they see as
a contract in an irrelevant or sidelined market. Defence
prime contractors are in no position to flow down their
customer's terms and conditions to commercial IT
companies and face a 'take it on our terms or leave it'
attitude. Alternatives are to buy or licence software.

Original COTS application
It is clear that COTS IT is produced to many different
standards, depending largely on the original application.
A number of different commercial sectors are considered
to examine how they vary.

Domestic
Equipment designed for use in the home, such as the
microprocessors and other integrated circuits found in
washing machines, microwave ovens and video
recorders operates in a relatively benign environment. It
is usually static, with a narrow operating temperature
range. Electro-magnetic compatibility is important but
design life for all white goods is only five years. Mobile

2-4

products, such as digital and video cameras are pushing a
trend towards increasing physical robustness.

Original COTS application
Domestic. Industrial. Medical.
Automotive. Maritime. Oil
exploration. Aerospace.
Foreign defence

EMP& other
environmental.
Qualification.
Traceability.
Military or Defence
specifications

Commercial
Information technology designed for commercial use
operates in a similar environment to domestic equipment
but is usually required to be more reliable as the
consequences of failure, for any reason, usually have
financial implications. In addition, the consequences of a
hacker accessing, for example, a banking or other
financial system can be extremely serious. Anything
from a PC-based system, through a server to a
mainframe system may be crucial to the operation of any
commercial concern.

Industrial
Industrial systems, particularly those operating on a
continuous basis, such as production-line equipment in a
steel or glass works, or those undertaking robotic tasks,
must have the highest availability. Again, the
environment can be remarkably demanding and
wrapping of delicate electronic equipment is widespread.

Medical
Information technology may just be commercial or
industrial adapted for a medical role but it may operate
equipment, such as X ray machines, where incorrect
operation has the capacity to kill. Thus some
applications involve safety critical operations; a fact
which may be particularly applicable to some military
requirements.

Oil Exploration
Many of the areas where oil companies are exploring for
new finds have hostile environmental conditions. These
include rigs in the North Sea, South Atlantic and Gulf of
Mexico, land-based equipment in Alaska and Siberia, as
well as tropical and desert regions. The application of IT
in this industry has provided some exceptional wrapping
issues, with a salt-laden atmosphere common and
extremes of temperature as wide as any experienced by
military equipment.

Nuclear
Much of the IT equipment operating in the nuclear
industry is actually used to control or monitor the
operation of nuclear reactors. This is a very safety
critical function and equipment failures or crashes

cannot be tolerated. Historically, custom-built systems
were the norm but, as with military IT, the nuclear
industry is being forced to embrace COTS IT.

Automotive
Not only are some automotive applications of IT safety
critical, such as drive by wire, but the equipment also has
to operate in tough environment. A wide range of
operating and survival temperatures and humidities is
essential and the mobile environment implies a high
level of shock and vibration. Engine management
systems are often fitted close to high-revving internal
combustion engines and must operate reliably through
the design life of the vehicle - typically ten years. Much
of the standard IT used on commercial vehicles is
already being applied to military versions as well as to
new military vehicles.

Maritime
In some ways more benign that the automotive
environment, the salt atmosphere and low frequency
vibration levels must be survived. Some systems again
are safety critical, particularly those that control the
engines and steering, while others, such as navigation
systems may be mission critical. With long periods spent
at sea, the only maintenance possible is that which the
ship's engineering staff can carry out using on board
spares.

Aerospace
The ultimate safety critical environment, civil flight
control systems have to survive a pretty tough
environment, in many ways similar to that found in
military aircraft. These and other IT based systems can
be exposed to trying conditions including a very wide
range of temperatures, low pressures and a broad span of
vibration and humidity.

Spacecraft, while less safety critical, have exposure to
a wide range of severe environmental conditions both
during launch and in the hostile emptiness of space itself.
Furthermore, the cost of getting a satellite into Earth
orbit or beyond is extremely expensive, making reliable
performance a key criterion.

Foreign defence
Military equipment supplied to other nation's armed
forces and then purchased off-the-shelf is different from
normal COTS IT and is not considered further.

Military or defence specification requirements
COTS IT does not meet defence specification such as
US mil specs and, worse, there is no audit trail.
However, the specifications that COTS IT can meet are:

Increasingly severe.
Usually not guaranteed by the supplier.
Often better than the supplier suggests.

EMP and other environmental
Hardware is not radiation hardened and for many
military applications, ruggedness still an issue, leading to
the need for wrapping to provide the required level of
protection. While environmental requirements in the
commercial sector are increasing, and much COTS IT is
built to avoid RFI, there is little actual testing and there

2-5

are no Tempest-proof items. Fire in a confined space,
such as on board a submarine, could be worsened by the
toxic products of combustion from some of the plastics
and batteries found in COTS IT. However, there is
convergence as commercial environmental specifications
toughen and military ones relax.

Qualification
Qualification may be as fit for purpose, mission critical
or safety critical. This requires testing to prove usability,
environmental survival, reliability, maintainability and
types of failure mode.

Traceability
While military equipment is normally traceable, in the
sense that each part and each work package is carefully
referenced, by and large such traceability does no exist
in COTS IT products. Thus, where safety is an issue, it is
difficult to provide proven safety cases.

It is noticeable, however, that certain industries are
now converging on this military requirement and
demanding traceability from the component suppliers
and sub-contractors. Typical is the vehicle industry,
which needs to know which particular vehicles to recall
for safety checks. Much of this change is being driven by
litigation concerns and is likely to apply increasingly to
COTS IT, particularly hardware.

Reliability
COTS software is notoriously unreliable and prone to
regular crashes, although it may well be better than
certified custom military software of similar complexity.
There is no database of failures and no traceable records
for COTS IT, though the wide user base of much
software does provide a degree of confidence. At the
same time, there are problems with product liability and
virtually valueless warranties for software. As mentioned
earlier, the US DoD does prove COTS IT by both board
and equipment level testing.

Acceptable MTBF and MTTR are key issues normally
considered in the very early stages of the procurement
cycle. The actual figures required will depend on a
number of issues including the operational role, the
operational environment, the consequences of failures
and the ease of maintenance.

Security
The requirements of military security are currently
different from commercial requirements, though the
latter are being driven by the need for financial
transaction security. Unfortunately, interfacing military
crypto requires modification to standard COTS software
and re-modification each time the software is upgraded.

The greatest problem lies with transmissions to and
from platforms, where radio links are essential and can
be intercepted. Commercial crypto usually takes several
years to get accredited for military use and is, of course,
also available to potential enemies.

Hackability
Designers leave built in trap doors in their software to
allow future access. Hackers familiar with COTS
software may readily exploit these entry points. A

Security.
Viruses.
Bugs

Mil
Procurement I

Acceptance testing
procedures

further issue is the indiscipline, common with COTS IT,
in the use of passwords, a trend that has been
accelerating with the increasing number of passwords
and pin numbers that each individual has to remember.

Viruses
One or more viruses may already be resident in COTS IT
software, while world familiarity eases its infection and
requires care to avoid providing entry points for viruses
during the life of the equipment. In general, viruses
written to work in custom military software are only
likely to be generated by professionals employed by
potentially hostile nations.

Bugs
All software contains bugs. These may occur at different
frequencies and with different impacts on the user. There
are bugs that may occur daily, weekly, monthly, yearly,
once a decade or even once in an equipment's lifetime.
One of the major difficulties is testing for bugs and in
this area, COTS IT fairs well with large numbers of Beta
testers, not to mention the often-large installed base.
However, removing bugs has the unfortunate habit of
introducing new ones, so that it may well be better to
live with a number of bugs if their consequences are not
severe.

Supplier upgrade position
No COTS IT supplier can continue to offer a standard
product in the market place for very long without
upgrading it. There are a number of drivers for this
approach:

• Competition from other suppliers.
• Inadequacies in the existing product.
• The need to broaden the capabilities of the existing

product.
• For software suppliers, to take advantage of

improvements in hardware speed and memory.
• For hardware suppliers, to benefit from

improvements in component and sub-system
technology.

The result is that improved hardware comes on the
market in a matter of months, while upgrades to
software appear every one to two years.

2-6

I Usability.
Supportability]

Hardware/software
ilability/version

Requirements.
: COTS supplier

Hardware/software
obsolescence @ handover.
Product life

Supplier upgrades
position

Usability and supportability
The general familiarity of people with COTS IT helps
usability as does competition in the market place.
Supportability usually depends primarily on the degree
of obsolescence when the equipment is handed over to
the user. Because of short COTS IT product lives,
supportability will often depend on the prime contractor
leaving the actual choice of COTS hardware and
software as late as possible in the delivery programme.

Rapid obsolescence
Two years seems to be the time span before the issue of
a major software upgrade for any particular program.
From that point on, the older version ceases to be
supported. The appearance of new hardware models is
measured in months rather than years. Thus, the use of
COTS IT forces the upgrade route on the purchaser
when the supplier ceases support. Consideration should
be given to upgrading only that hardware necessary to
support new software needs.

Support
The term support is used here as the activities needed to
enable equipment to be kept available for operational
use. It includes training and provision of documentation
for users and maintenance staff, as well as the supply of
spares and test equipment.

Support
Training. Documentation.
Spares. Test equipment
Repairs

Maintenance
implementation & support

Training
On the whole, COTS IT suppliers do not provide training
in their products. This task is largely left to established
training companies and can sensibly be incorporated in
the equipment prime contract.

Documentation
COTS IT documentation is very thin, the choice of all
suppliers being to provide the vast bulk of the
information on CD ROMs. This format may change as
DVDs and other new media replace CD ROMs. Some
software programs also provide on-line support for
registered users, allowing them to downloaded updates
from supplier web sites. All this help may be printed out,
but it is in the form of very basic word processing pages,
largely without illustrations, rather than the excellent
standard of most custom (and hideously expensive)
military handbooks.

Spares and test equipment
Much COTS IT hardware is not designed for repair and
thus spares support is limited both in extent and duration.
In the commercial market, failed hardware is normally
discarded if it fails outside the extended warranty period
- normally three years. In any case, manufacturers'
warranty repairs are likely to be of a form fit and
function nature, where the failed unit may simply be
replaced rather than repaired.

Much COTS IT hardware includes diagnostic software
to facilitate faultfinding.

Repairs
The support of COTS IT demands a different
maintenance policy to that in place for existing military
equipment. COTS IT hardware is relatively reliable and,
in the event of a failure, much of it is designed to be
thrown away rather than repaired. Spares at board level
are available only for a short period for current products
and are not NATO codified. Both repair work and IT
training have been largely sub-contracted by the IT
industry. Whether, in these circumstances, prime
contractors can provide long-term logistic support
remains to be seen.

Modifications and half life updates

Modifications
Contractors are very reluctant to undertake modification
to in-service COTS IT, and government financiers are
somewhat reluctant to accept the standard upgrade
process. There is a need for transparent interfaces and
architecture at the start of any COTS IT-based
programme to support future growth. Furthermore, any
modification may introduce new bugs.

Performance and efficiency improvements

There are two main purposes for using any IT. The first
is to improve ways of undertaking tasks to provide
improved performance. The second is to do the task
more efficiently. The fact that the equipment contains
COTS rather than custom IT should not reflect on this
issue. Efficiency improvements can be obtained by
using, for example, a standard COTS human-machine

2-7

interface to avoid the need for retraining operators before
they move to a new role.

Disposal
The decision to dispose of a piece of COTS IT is
generally straightforward. However, care must be taken
to ensure that any classified data are entirely and
effectively removed from any storage medium, such as
floppy and hard disks, CDs and tapes. Special care must
then be taken with their declassification or destruction.

Modifications & half life
updates. Efficiency &/or
performance improvements

2-8

The COTS IT Circle helps identify issues, the decision that must be made and
who has to make them, when using COTS IT in military equipment

Abbreviations
MTBF - Mean time between failures
MTTR - Mean time to repair
IPR - Intellectual property rights

DPA - Defence Procurement Agency
OR - Operational Requirements

3-1

Standards - Myths, Delusions and Opportunities
(February 2000)

Nie Peeling
(DERA Fellow)
Richard Taylor

(DERA Senior Analyst)

Defence and Evaluation Research Agency,
Woodward Building, DERA Malvern

St Andrews Road, Malvern
Worcs., WR14 3PS,UK

N.Peeling@eris.dera.gov.uk
R.Taylor@eris.dera.gov.uk

Introduction

This paper describes how a new approach to defence
standardisation could deliver, for the first time, the
benefits that defence standards and Open Systems have
for so long promised.

The paper traces the history of defence computing
standards. It examines the original benefits that
standardisation promised in the defence arena. It
examines why so many defence standardisation efforts
have failed to deliver on those promises. It then goes on
to examine why the original efforts to create a standards-
based computing market (the Open Systems movement)
also failed. The limitations of a standards-based
approach will be described from both a technical and
commercial viewpoint. The paper concludes with an
optimistic message, that the Internet Standards and the
Open Source movement have the potential to deliver on
the original promise of the Open Systems movement.

Original benefits promised by
standardisation

In the UK, computing standard efforts started in the mid
1960s with the standardisation of Coral 66 as the
standard high level language for real-time software, and
the Ferranti Argus M700 as a standard computer
architecture. The prime benefit intended for such
standardisation was the reduction in through-life
maintenance costs for software and hardware by
reducing the diversity of programming languages and
computers utilised in UK MOD systems.

A subsidiary benefit of these early standardisation efforts
was the increased portability and reusability of software
written in Coral 66 and Argus M700 assembler.

Coral 66 was invented because no existing commercial
language (such as Algol 60) had the necessary list of
mandatory features:

• Deterministic behaviour needed for real-time,
embedded applications;

• Highly efficient run-time code;
• Support for structured programming.

Reduced diversity and application portability have
remained two of the enduring benefits sought by defence
standards.

In the 70s and 80s additional benefits were pursued by
defence standardisation efforts:

• Promotion of best practice to industry (e.g. PCTE);
• Interoperability (e.g. ISO OSI);
• Promotion of a market in competing, but

compatible, implementations (e.g. Ada and PCTE).

Why did the original promise so often fail?

Although Coral 66 is remembered with some affection,
most defence standardisation efforts have either failed
totally (e.g. PCTE+), or have been abandoned after the
mainstream market passed them by (Ada), or have
locked the defence community into niche products (ISO
OSI's X.400). The principal reasons for this limited
success are:

• You cannot buck the market (e.g. Ada and ISO
OSI); eventually COTS products make defence-
specific niche products look too expensive, with too
little product support;

• You can never truly create a homogeneous defence
world (e.g. a country still has to interoperate with its
allies, and its suppliers);

• Standards created by committee are often either
"lowest common denominator" or very difficult to
implement. This leads to industry de-facto standards
shooting ahead (e.g. TCP/IP).

British Crown Copyright 2000 Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

3-2

The Open Systems market

By the early 80s the lack of success of defence
standardisation efforts was widely understood, if not
openly acknowledged. It was at this time that the UNIX
supply industry coined the term Open Systems and
standards organisation such as IEEE (with POSIX), the
OSF and X/Open rose rapidly to positions of great
prominence. The defence community saw the Open
Systems movement as a chance to reduce operating
system diversity, enabling application portability,
allowing competitive hardware procurement, all within a
framework that commanded mainstream COTS support.
Not surprisingly the defence world were early,
enthusiastic supporters of the Open Systems movement,
with many countries adopting Open Systems standards
within their defence computing policies.

Yet again the defence world had backed a loser. The
principal reasons that the Open Systems movement
fizzled out were:

• The UNIX vendors could not resist differentiating
their UNIX offerings in order to lock customers into
their particular flavours of UNIX. Consequently the
promise of application portability was undermined,
and software vendors usually only supported a few
of the largest vendors, and many abandoned UNIX
altogether for the more homogeneous Microsoft
world;

• The operating system that has the most applications
wins. Microsoft tied Windows very closely to the
PC, whereas the leading UNIX suppliers tied their
operating systems to their own proprietary
hardware. As PC sales took off, Windows came to
be the favoured desktop operating system for
software vendors to support. UNIX and Open
Systems retreated into the server operating system
market, and in the 90s Microsoft started to take that
away from them with their NT operating system.

Common Operating Environments

In the late 90s the UK's MOD accepted that the Open
Systems movement was not going to deliver an answer
to its needs for computing standards and started the
development of Common Operating Environments
(COEs) and the UK Defence Interoperability
Environment (DIE). The COEs and DIE were comprised
of a pragmatic mixture of de-jure and de-facto standards,
and proprietary products. Unlike the US's DU COE, the
UK approach was standards-based and was not a
software build and system integration infrastructure.
Consequently the DIE and COEs were intended to
promote, rather than guarantee, interoperability and
application portability.

The COE and DIE initiatives have promoted a major
shift in the procurement patterns of MOD projects, with

greater adoption of Windows on the desktop, and a move
towards a domain-based approach to security.
The COEs and DIE approach creates a number of
challenges:

• Can the definition of the COEs and UK DIE evolve
at a rate that matches the furious pace of change in
the marketplace;

• Given that the COEs and UK DIE evolve at a
similar rate to the IT marketplace, there is a
significant issue in either keeping defence systems
up to date with the latest COEs and DIE, or of
managing multiple legacy systems;

• The situation of whether a pragmatic approach that
includes de-facto and proprietary standards is
consistent with guidelines for open competition, is
not totally clear.

Given that the benefits of the COEs and UK DIE are less
clear cut than an approach that seeks to guarantee
interoperability and application portability; and that the
costs of maintaining and applying a rapidly evolving set
of standards will be non-trivial; only time will tell if the
COEs and DIE approach is cost effective.

The Way Ahead? - Internet Standards and
Open Source

The last two years has seen a phenomenal growth in the
usage and profile of both Internet standards (such as
HTML and XML) and Open Source implementations
(such as Linux). Both these movements have been
fuelled by the dramatic growth of the Internet. These
movements are driven by forces that make them of
particular interest to the defence community:

• The Internet by its nature is not tied to any particular
proprietary hardware or software platforms;

• The Internet's focus is on interoperability. This
coincides with the emergence of extranets, which
have convinced many organisations that
interoperability with the outside world (customers,
suppliers and partners) is a more important business
driver than intra-organisational interoperability. As a
consequence the role of proprietary standards, such
as Microsoft Office formats, as a mechanism for
interoperability between organisations is in decline;

• The Internet and Open Source communities are led
by engineers. This has two very important effects:
firstly, that it is relatively free from commercial
politics and "dumbing down"; and secondly, that
this world takes implementation issues very
seriously;

• The Open Source method of licensing software
means that it is virtually impossible for
manufacturers to produce differentiated products
that undermine application portability. For this
reason it is possible that Linux may soon become
the software vendors non-Windows platform-of-
choice;

British Crown Copyright 2000 Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO

3-3

• The Internet and Open Source communities are able
to attract massive development resources, much
larger than even a company of Microsoft's size can
deploy;

• Open review of source code leads to two very
important properties: firstly, open source software
over time becomes extremely robust; and secondly,
open review is coming to be seen as the key to
controlling software vulnerabilities, and the Open
Source model makes patches to vulnerabilities
available very fast indeed.

The defence world should consider whether the Internet
and Open Source communities are now delivering on the
promise of the Open Systems movement. In addition
there are benefits offered that go beyond anything that
current standards can provide:

• Open Source may be the only way of getting the
twin benefits of COTS support and visibility of
vulnerabilities;

• Open Source may offer an alternative to GOTS and
niche-COTS solutions to defence-specific
requirements;

• It may be possible to develop defence-specific
variants of Open Source programs;

• Given the technology focus of the Internet and Open
Source communities, it is possible that the defence
world can influence the direction of these
communities.

Conclusions

Defence standardisation efforts have traditionally been
frustrated by the rapid rise of de-facto COTS standards.

The latest UK defence standardisation efforts based on
COEs and the UK DIE are based on a pragmantic choice
of de-facto, de-jure and proprietary standards. Only time
will tell if these latest efforts provide the benefits of
standardisation in a cost-effective way which can keep
pace with the rapid developments in the IT marketplace.

This paper argues that the defence community should
consider whether the latest developments in Internet
Standards and Open Source, offer an opportunity to
capture the benefits of Open Systems which the UNIX
industry squandered in the 1980s.

British Crown Copyright 2000 Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO

4-1

Environment for Signal Processing Application Development and
Prototyping - ESPADON

Bob Madahar, Jan Hunink1, Gilbert Edelin2, James Smith3, Brigitte Saget4

BAE SYSTEMS Research Centre
West Hanningfield Rd,

Gt. Baddow, Chelmsford CM2 8HN, U.K.
bob. madahar @ gecm.com

Abstract: Defence industries are increasingly expected
to field state-of-the-art products, at significantly lower
costs, over significantly shorter time scales, and with
significantly greater functionality. New designs, as well
as design upgrades, are expected to keep pace with
technology advancements, particularly in
microelectronics. These constraints, and others, are
forcing industry increasingly towards Commercial Off
The Shelf (COTS) components (hardware and software).
The advantages are reduced costs and state-of-the-art
technology compared to proprietary in-house
developments, and hard-wired solutions, which have
long development times and are invariably out of date by
the time the product is commissioned. The disadvantages
are principally non-compliance with rigid military
specifications of the COTS components and the inability
of defence industry product design development and
integration methodologies, established over many years,
to accommodate the COTS components in an efficient
and timely manner. Obsolescence (more acute for
bespoke designs) created by COTS components for the
long life-cycle military products, is also a key concern
and leads to costly retrofits unless the potential design
upgrade is included in the design methodology.

These major concerns are being addressed for defence
embedded signal processing applications by the tri-
national European EUCLID/Eurofinder defence
programme called ESPADON. The primary objective is
to significantly improve (reduced cost and timescales)
the process, by which complex military digital
processing systems are designed, developed and
supported. A new design methodology, and a new
development environment, has been reinvented to
support this aim through reuse, concurrent engineering,
rapid insertion of COTS technology and the key
concepts of rapid and virtual prototyping. These
techniques and developments are presented in this paper.

Keywords: ESPADON, Methodology, Prototyping, DSP,
COTS

1 INTRODUCTION
Over the last decade there has been a sea change in the
climate for the development of military digital
processing systems. Principal factors forcing the change
are:

The New World Order - the end of the cold war has seen
a dramatic reduction in the defence budgets worldwide
and changed the perceived future requirements. Political
changes, economic globalisation, and technology
advancements, sometimes on the back of 'local'
conflicts, have also brought additional competitors
(Israel, South Africa, India,..) into the market place.

The Microelectronics Revolution - the exponential
growth in the performance of microprocessors and
associated electronics (> 10M transistors/device and
rising, Memory x 4 every 3 years [>256Mbit DRAM,
>8Mbit SRAM], Clock rates x 50 every decade). This is
continuing apace (1.5 order of magnitude increase in
performance every decade, Moore's law survives!) with
no immediate signs of abating or hitting the fundamental
limits of physics (see Fig. 1)

If
i a. S

»I I!

uuu

SI
mm"^m Moore's Law
—— ESPADON Iterations

■ ■ Coventlonal Product

1 7i
5 10 15

Time from To (years)

20

Fig 1. Iterative Development Methodology

1 Signaal, Zuidelijke Havenweg 40, P.O. Box 42, 7550 GD Hengelo, Netherlands
2 Thomson-CSF Detexis, 1 Bid Jean Moulin, 78852 Elancourt CEDEX France
3 Thomson Marconi Sonar Ltd., Dolphin House, Ashurst Drive, Bird Hall Lane, Cheadle Heath, Stockport, Cheshire,
SK3 0XB, U.K.
4 Matra BAe Dynamics, 20-22 rue Grange, Dame Rose, B.P. 150, 78141 Velizy-Villacoublay, CEDEX France

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

4-2

The New Age User - the customer/user expectations are
ever more demanding in terms of system inter-
operability, functionality, capability, and cost (better,
faster, cheaper). Note this is conditioned, perhaps
unfairly, by their daily exposure to the high
performance, fast graphics, highly integrated and easily
networked PC environment available on their desk top.

These conditions give rise to the adoption of COTS and
the demise of the conventional military methodologies
and bespoke military specific developments of signal
processing systems for the following reasons:

a) For a specific application, at a given time, the
optimum (performance) signal processing designs
are likely to be bespoke non-standard hardware and
interfaces, software optimised for the specific
hardware, and a performance driven unique
solution. Such 'company-centric' proprietary
developments, and hard-wired solutions, have long
development times and are invariably out of date by
the time the product is commissioned. This is costly
(time and money), the systems are difficult to reuse,
and in any case quickly (a few years) overtaken by
COTS technology, and emerging standards, and
rendered obsolete (technology and components).

b) The support for military specific components by
microelectronics vendors is declining, as they
position for the significantly larger consumer
market, thereby accelerating obsolescence problems
and increasing the costs of military specific designs.
The COTS components offer significantly better
cost/performance ratios that the defence industry
must try to adopt to remain competitive and offer a
leading technical solution. Vendors recognise this
and offer Military Off The Shelf (MOTS or COTS+)
components that are slight variants of the COTS
components to include extended environmental
range of operation and higher quality components to
improve the Mean Time Between Failure (MTBF).

c) The conventional timescales for product
development (typically 4 yrs for Sonar and 10 yrs
for Radar), followed by over a decade of in-service
support, are disparately long compared to the very
short (~ year) revision rates and technology refresh
rates for COTS digital processors. Hence COTS
processing technology will have increased in
performance by one or two orders of magnitude
over the typical lifetime of a product. To leverage
these developments, defence industry must reduce
development timescales and design for the rapid
insertion of emerging COTS technology (design for
upgrade) so as to maintain a leading solution for the
customer.

d) The significant disparity in timescales discussed
above presents defence industry systems with an
acute obsolescence problem that is occurring earlier
and earlier in the overall product lifecycle. At
present there are two methods available to handle
such a problem. The first is a lifetime buy and

storage of components that are going to become
obsolete. This requires capital outlay upfront, hence
depreciating in value, based on exiting sales and
estimated sales in the future. The latter may not
materialise (capital loss) because the system by
definition is obsolete compared to the current
competing products. The second is an equipment
retrofit with the current component technology.
Unfortunately, design for upgrade is not integral to
conventional military designs. Hence the retrofit is
comparable in cost to the initial development and
therefore competes unfavourably with current
competing products. The solution is a new
methodology where the development times are
reduced, with design for reuse and design for
frequent upgrades as an integral part of the process.

The new methodology, to ameliorate the above concerns,
is being developed by the tri-national European
EUCLID/Eurofinder defence programme called
ESPADON [1] [2] as it is beyond the resources of a
single company and Nation. The international
consortium comprises Thomson-CSF and Matra BAe
Dynamics from France, Signaal from Netherlands,
Thomson Marconi Sonar Ltd and the Marconi Research
Centre from the United Kingdom. The 3 year duration
project, jointly funded by the consortium and by the
Ministries of Defence of France, United Kingdom and
the Netherlands, started in July' 98.

2 NEW METHODOLOGY & TECHNIQUES
ESPADON is the European analogue, albeit with only a
few % of the budget, to the U.S. tri-service research
programme RASSP (Rapid Prototyping of Application
Specific Signal Processors) which was initiated in 1993
with a budget of $150M and lasted for nearly 5 years [3].
RASSP was a very broad programme involving
government, defence industries, Electronic Design
Automation (EDA) industries and Academia
investigating three principle threads - Architecture,
Methodology and the Education and Enterprise
Infrastructure. The focus of ESPADON however is
much narrower, towards the methodology and
environment for embedded signal processing
applications, and benefits from the lessons learnt by the
RASSP programme.

The main project thrusts are:

1) Synthesis of an advanced design methodology and
processes for the development of the next
generation real-time signal processing systems;

2) Analysis and evaluation of COTS tools, emerging
standards, signal processing and communications
libraries, and associated techniques of direct
relevance to the methodology;

3) Implementation of an ESPADON design
environment (EDE), based on the integration of best
of class COTS tools, standards and techniques,

4-3

within an extensible software framework, that can
support the methodology;

4) Demonstration of the objectives through the
implementation of real-time adaptive signal
processors for Radar and Sonar applications on
COTS hardware platforms;

5) Measurement of metrics to quantify the productivity
gains and to validate the EDE, the techniques, and
the methodology; and,

6) Dissemination of the project and results via the
internet, seminar and workshops aimed at European
companies.

Of these, the progress midway through the project is
that, the methodology has been specified (1), the initial
set of COTS tools for the EDE selected (2), and a
preliminary version of the EDE implemented (3) and the
benchmarking activity begun (5) as described in the
sections below.

development of the signal processing subsystem at the
highest level. Central to the new methodology are the
following key processes:

REDESIGN LOOPS

I SYSTEM REQUIREMENTS!

J FUNCTIONAL DESIGNL
REDESIGN LOOPS

1 HARDWARE /SOFTWARE
1 PARTIOMNG y

J HARDWARE CONCEPT 1 [SOFTWARE CONCEPT H

^HARDWARE DESIGN] j SOFTWARE DESIGN L

I HARDWARE PRODUCTION I I SOFTWARE PRODLCTIONJ^

' T i ,
 IHARDWARE TESTl I SOFTWARE TEST I

j-* *a j PRODUCT INTEGRATION TESTT

Fig. 2. V Model of Development

2.1 Methodology
The conventional methodology for signal processing
system or component development is analogous to that
for software engineering in the late 70's. It can be
represented by the sequence of different activity steps,
Requirements-Specifications-Design-Implementation-
Testing, where a new step begins when a previous one
has ended. The sequence is known as a 'waterfall', or
with iteration to previous steps as an 'iterative waterfall'
or the V model where hardware and software are co-
developed for a system, Fig 2. These methods have been
shown to be deficient for software engineering [4]. They
fail to recognise the role of iterations in the overall
process and the specifications are frozen at an early stage
of the development process. The implication of the
latter is that the cost committed to the program is large
before the system concept has been adequately proven in
terms of risk and performance. Iterations are to reduce
risks, verify - are we building the product right?,
validate - are we building the right product?, and test the
outputs of each activity before proceeding to the next or
to a previous activity to take corrective actions. Failure
to do this results in validation late in the development
process by which time corrective actions are costly as
they propagate backwards through the process. For these
reasons new methods have been developed for software
engineering, and applied successfully, but have not as
yet been applied to signal processing. A key method is
the risk driven spiral model where risks are analysed,
versus key criteria, at each step and the developments
refined through successive iterations to eventually
converge to the final solution [5].

2.1.1 The Iterative Development Process
ESPADON has, after careful analysis, adopted and
modified this method and defined a new methodology
for signal processing application development. This is
shown in abstract form in Fig. 3 and applies to the

1 ' Plan 5^ Devetopment |

1 From System Dev« .opmei

R
e
q
u
i
r
e
m
e
n
t
s

R
1
s
k

R
e
g
i
s
t
e
r

D
e
V

e

0

P
m
e
n
t

P

■
n

4 1 Specification h

i«—J Functional Design h
< J Architectural Design h

4 1 Implementation h
t^Svstem Reviej^

To System Development

Key: | Process | [Artefact] | Development Control |

Process Flow ~~* Inlonuatioii Flow *

Fig. 3 Abstract Iterative Development Lifecycle

Specification - refinement of the raw requirements from
the system development into an engineering
specification that includes salient functionality,
interfaces, physical attributes and performance and cost
criteria.

Functional Design - the functional parts of the
component specifications are modelled by assigning the
appropriate algorithmic and control processing blocks,
functional libraries and description models of
computation, to a functional model. The model is
independent of the implementation and is simulated to
prove functional correctness or raise any corrective
actions for further refinement of the overall process.

Architectural Design - The critical characteristics of the
reference functional model (computing power, rate, etc.)
and the non-functional requirements (costs, volume, etc.)
are identified. A risk analysis is performed to determine
the critical characteristics to be taken into account in
identifying candidate architectures. Through trade off
studies, the most effective architecture is chosen. If no

4-4

appropriate solution can be found, the model and/or the
system requirements are refined.

Implementation - the result of the current design
iteration, a Rapid Prototype, a Virtual Prototype (section
2.1.3) or a Production Component. This process includes
production and test of hardware and software,
integration of the software on the target hardware and
validation of the component. Co-design,
Hardware/Software synthesis and co-verification are
essential techniques to use in this process.

The other nodes shown in the diagram control these
processes and the development lifecycle for the signal
processing component being developed. Namely,

Plan Development - input is the requirements and the
output is the plan and risk register

System Review (Control Point) - a system level review,
with all the system design authorities, at the end of each
complete cycle in accordance with the plan. Outputs are,
a) exit with the results (the appropriate artefacts) to the
overall system development team for integration with the
system, or b) reiteration of the cycle with changes to the
control artefacts as necessary.

The control artefacts are the Requirements - handed
down from the overall system design process, Risk
Register - severity and priority ordered list of current
identified risks, and the development plan.

Each of the key processes above is itself composed of
the generic abstract iterative process shown in Fig. 4
where the nodes either represent generic activities,
described below, or the control artefacts described
previously. These generic activities are the five phases
that embody the ESPADON iterative design
methodology:

Prom Previous Process

[Requirements]

I

[Development Plan]

Risk Analysis! *\ Definition I H Development! "j Validation I l Review I

It Register]*

Key:

To Next/Previous
Processes

Information Flow

Fig. 4 Anatomy of an Iterative Process

Phase 1: Risk Analysis - analyse the requirements, any
available process artefacts, the risk register and the
development plan to determine what should be achieved
in the current pass through this process.

Phase 2: Definition - the definition and documentation
of the objectives for this iteration. This will include
creating or updating any design and test documents
and/or data involved.

Phase 3: Development - develop the object(s) (one or
more of the design artefacts) of this iteration according
to the definition made in the previous activity.

Phase 4: Validation - validate the object(s) produced by
this iteration against the objectives and the component
requirements using the defined tests. Analyse the results
and update the risk register.

Phase 5: (Exit OR Refine) Review - review the
requirements, any available design artefacts, the risk
register and the development plan to determine what
course of action needs to be taken next. Possible actions
are: a new iteration of the same process (introducing new
requirements or refining existing ones) or move onto the
next process. If a new iteration of the process is required
and this is not compatible with the current development
plan, then a Development Review must be initiated and
the plan updated.

Design artefacts, not shown in the diagram, will be
produced and modified by the activities as the
development iterations proceed. As the iterative process
proceeds these artefacts will grow in content and become
more refined. At the end these artefacts, with the control
artefacts, will be the signal processing components
complete design archive which can be reused for the
development of similar components and mid-life
technology updates.

The abstract iterative processes described above are
equivalent to a spiral model for signal processing
development at the component level, sub-spirals or
fractals of the spiral model, or the signal processing
development at the system level as shown in Fig. 5.
Embedded within this development process are the key
ESPADON design concepts defined in the next section.

Fig. 5 Spiral Model of ESPADON Development

2.1.2 Reuse & Capitalisation
Reuse, along side the iterative development process, is
the other element of the signal processing methodology
implemented to decrease development time and cost.
Reuse applies at two levels:

4-5

Reuse between iterative processes of development cycle -
use elements developed in an iterative process with a
certain level of refinement for the development of the
next iterative process having a higher level of
refinement. The strategy with reference to the generic
iterative process is:

Definition activity - the same modelling formalisms or
functional models are used at different levels of
refinement but with dual libraries of components,

Development activity - hardware is synthesised and code
is generated for different target machines with the same
synthesis techniques. These targets may be, for example,
a workstation or a real time multiprocessor machine
according to the development stage,

Validation activity- the virtual prototypes of the previous
iterative process are used as a reference for the virtual
prototype of the next iterative process.

Reuse of existing components (SP algorithms,
components, hardware architectures, PCBs, etc.) - use
in-house components already developed or COTS
components for the development of an activity (or an
iterative process) of the development cycle. The
development strategy is:

Development with reuse - development of an application
must be able to reuse already-developed existing
constituent parts.

Development for reuse (or capitalisation) - the new
constituent parts of an application are developed in order
to be reused in other systems.

The above reuse objectives are integral to the
ESPADON development process and enables,

a) increasing productivity and decreasing development
time,

b) providing additional architecture choices,

c) using better quality constituent parts since they have
already been tested and validated, and

d) capitalising on existing know-how.

2.1.3 Rapid and Virtual Prototyping
An iterative development method necessarily implies the
use of prototyping, at some level, such that requirements
and functional solutions (the prototypes) can be
validated and verified by measurement and improved
through successive refinement to arrive at the final
solution. The value for complex systems development
was recognised in software engineering a few decades
ago and high level environments to support prototyping,
and faster iterations of prototyping (rapid prototyping),
developed [6].

Rapid Prototyping - Unlike software engineering where
the functions are compiled and executed to run on a
workstation, signal processing requires the functional
solutions to be partitioned, mapped and implemented on
the embedded multi-processor hardware for meaningful

performance measurements and validation. For
conventional developments this is a specialised and
expensive activity as the code is hand mapped and hand
crafted for optimum performance on, as explained
earlier, rapidly obsolete custom computers. Instead we
need a prototyping environment that is fast and can
support the insertion of the available commercial
technologies based on COTS boards or COTS computers
integrated with any necessary proprietary hardware (I/O,
display etc.). The rapid prototype will enable the
functionality to be properly tested in terms of
dependencies, performance and real-time behaviour.
This can be applied to any signal processing component
development and associated requirements. It provides
an opportunity for the early and frequent involvement of
the customer to refine the requirements and common
understanding of a signal processing component or
iterations of the signal processing system. Rapid
prototyping for signal processing is therefore the ability
to seamlessly move from the functional design to the
architectural design (the modelling & simulation
domain) to the implementation, through automatic code
generation, on real-time COTS test beds (the execution
and measurement domain).

Note that the prototyping is an iterative development
process where the results are used to refine the
successive iterations as per the generic development
processes described earlier. Clearly as the iterative
process proceeds, performance and behavioural data are
amassed, the functional models grow in content and
become more refined. These successive prototypes,
together with their associated functional models and
performance and behavioural data, provide the basis for
virtual prototyping.

Virtual Prototyping - is the ability to model and simulate
in the software domain, the complete signal processing
application, including hardware at different levels of
abstraction, to validate the architecture selection prior to
technology implementation. Rapid prototype
measurements and information feeds into the virtual
prototype, which enables component and system
libraries and data bases to be built so as to construct
virtual models of signal processing systems for iterative
cost/performance and other trade off and analysis
studies. Integral to the studies is the concept of
hardware and software co-design discussed next.

Co-design - this is implied in the prototyping described
above but has particular relevance to virtual prototyping
as follows. Co-design is defined as the concurrent and
co-operative design of information processing sub-
systems composed of hardware and software
components operating together. It is central to the
iterative prototype developments discussed earlier. In
the traditional 'V model (Fig. 2), the hardware and
software developments are partitioned early in the
development lifecycle. Hence they diverge in terms of
engineering or design interaction, and cross-validation,
until the integration, test and validation phase. This
phase however is much further downstream leading to

4-6

potentially costly (time and money) reengineering of
solutions, often in software as the hardware is by then
fixed, to overcome deficiencies with respect to the initial
requirements and specifications (as per the issues in
Section 2.). Co-design provides a method to overcome
these deficiencies by closely coupling the hardware and
software developments within an iterative design
framework. The main phases are shown in Fig. 6. The
important points are that the design starts with a system
or sub-system specification and functional model. This
specification may be independent of the future
implementation and the partitioning of the system into
the hardware and software components. The
specification has to be captured in a functional model
that can be simulated and verified. This model is
partitioned into hardware models and software models
that make up an overall architectural model of the
system (the virtual prototype discussed above). These
models will at the lowest level be described in high level
languages such as C and VHDL and at the highest level
be described by graph based objects.

System
Specification

'
HW-SW

Partitioning

1 *«■"* ' *
Software

Description
Interface
synthesis

Hardware
Description

1
■

Software
Design

Hardware
Design

* i *^*****^
HW-SW

Co verification

Prototype

Fig. 6 Co-design Process flow

With the emergence of large reconfigurable and
reprogrammable devices (» Millions of Gates), and
system on a chip (SOC) devices, co-design offers a very
powerful technique for encapsulating by design software
functionality onto hardware devices through partitioning
studies and trade-off studies so as to arrive at an optimal
architecture. Because it is model based, it is easier to
modify and refine the models and architecture for the
latest implementation in the succession of prototypes.

Hence the co-design methodology provides the ability to
model the system specification, to model the architecture
solution and to perform trade-off studies (performance,
cost, power consumption etc.). A key application in
signal processing application development is in the
partitioning and mapping of time and performance
critical signal processing functions, that would otherwise

run on COTS general purpose processors, onto COTS or
bespoke FPGA or SOC arrays.

2.1.4 The Model-Year (MY) approach
The concepts of rapid and virtual prototyping for signal
processing are fundamental to the MY architecture
concept developed under RASSP [7] and is integral to
the ESPADON iterative development methodology. A
MY approach expects that the signal processing system
can be fielded with the latest digital technology in less
than a year if the architecture has been developed
iteratively through a succession of prototypes. In fact
the MY concept is to deal with obsolescence and provide
systems with the latest COTS digital technology when
fielded. Key attributes of the MY concept are;

a) the MY mitigates the risks of the development of an
equipment by rapidly validating its requirements
through a succession of prototypes (Rapid
Prototyping); and

b) the implementation of a MY architecture of the
signal processing application uses the available
digital technology.

Indeed, instead of developing expensive and rapidly
obsolete custom computers, the rapid prototype
integrates available commercial technologies based on
COTS boards or COTS computers. On the other hand,
the final equipment, taking into account the constant
digital component improvement, is developed with the
latest technology. Therefore with the MY architecture, a
retrofit of the equipment due to an obsolescence of
components is only another iteration in the life cycle of
the equipment.

These iterative technology insertions are shown in Fig. 1
as the 'ESPADON technology staircase'. The signal
processing system prototypes are refreshed with the
latest COTS technology at regular intervals which in
practice will be determined by the planned refresh rates
for the pre-production, delivery, and post production
phases of the signal processing system as part of the
iterative development methodology.

3 THE ESPADON DESIGN ENVIRONMENT
(EDE)

Having defined an ESPADON methodology and
development process, the next technical development
was the ESPADON Design Environment (EDE) to
support this new method [8]. Figure 3 described earlier,
shows the key development activities which need to be
supported by the EDE. For each, the technical
requirements, pertinent techniques, and scope was
identified and defined. Technical studies were
undertaken to provide up to date information on key
techniques such as software synthesis, hardware
synthesis, rapid and virtual prototyping, libraries, tool
interfacing techniques, etc. Each study summarised the
current status of the technology areas and potential

4-7

COTS tools that were available to support it. These
COTS tools were evaluated further as described below.

3.1 COTS Tools Selection
Having identified the potential COTS tools in the
domain areas of interest, a tool selection process was
defined [8]. As part of this process, and to ensure
consistency, a tool function coverage grid, Fig. 7,
matching the methodology requirements was designed
and used to rank the tools in each domain [9]. Non-
functional requirements, not shown, were also added to
the assessment. In parallel, a vendor questionnaire,
consistent with the grid, was also sent to the vendors for
completion and the results used to update the ranking.
The key factors that were taken into consideration for the
ranking were; 1) Commercial factors (size of company,
licence costs, history, support etc.), 2) Features and
functionality support, 3) Interface with existing and to
future tools and designs, 4) Methodology support, and 5)
Usability

"""Sn,. Activity Risk Analysis Definition

S/W
Synthesis

development

1/F
Synthesis

H/W
Synthesis

Validation

Specification

Functional Design Yes Yes Ye* Yes Yes

Architectural
Design

Limited Limited Limited Linited Limited

Implementation
- Rapid Prototyping

Yes Yes Yes Yes Yes Yes

Implementation
- Virtual

Prototyping

Yes Yes Yes Partial Yes Yes

Implementation
• Production

Standard

Partial Partial Partial Partial Partial Partial

Fig. 7 Tool Function Coverage Grid

Following the collation and analysis of the results, the
best of class tools were selected for detailed evaluations
with representative test applications [10]. As the first
release of the EDE is directed towards functional design
and rapid prototyping, the detailed evaluation stage has
concentrated on these domains only at this particular
stage in the project. The selection process for co-design,
co-simulation and virtual prototyping tools has just
commenced.

From the results of the evaluation, the best of class tools
for the first release of the EDE, and rapid prototyping
are:

• GEDAE [ll]Currently technically the best of class
tool. It is also the recommended tool from the
RASSP programme.

• Ptolemy [12] An extensive research & development
software suite covering many domains of signal
processing and considered to be the father of signal
processing simulation tools. It is research quality
software, the output of many students and many
years of research at the University of Berkley. It is

free open source software available directly from
the University.

In addition the following has been selected for
mathematical work, algorithm development and
prototyping.

• Matlab/Simulink[13] Matlab is widely used among
project partners

Other than the above tools, the evaluation studies also
recommended the use of signal processing libraries and
standards and associated APIs, for example for
algorithms and communications, to support reuse and
capitalisation and provide tool independence for the
future. ESPADON has therefore evaluated the following
standards;

Vector Signal Image Processing Library (VSIPL) [14] -
This standard is being developed by representatives from
Industry, with representation from ESPADON, and
academia with the goals to:

- Catalyze the formation of an Industry Standard
Working Group for Vector/Signal/Image Processing
Libraries.

- Create a widely (industry) supported standard
API/library for vector/signal/image processing
primitives.

- API/Library for single processor and parallel version.

- Foster standardization for sensor software portability
such as reuse, interoperability, low cost COTS
upgrade path, lower life cycle costs, etc.

ESPADON is adopting the VSIPL API, and
investigating the efficient implementation of the VSIPL
standard on the ESPADON target platforms and future
evolutions, so as to enable reuse and capitalisation of the
algorithm developments. These developments are
focussed towards application domain libraries, such as
for Radar and Sonar.

A draft of the VSIPL standard has been written and has
been distributed for final comments and approvals by the
VSIPL core members.

Message Passing Interface Real-Time (MPI-RT) [15] -
Inter-process communications (EPC) are the glue that
binds processing in the ubiquitous multi-processor
embedded signal processing systems. An IPC standard
offers the potential for code portability, and hence reuse.
MPI-RT is such a standard, and like VSIPL, is being
developed by representatives from Industry and
academia.

MPI-RT is neither a subset nor a superset of MPI or
MPI-2 but part of the process to develop a message
passing interfaces standard for real-time applications. It
has been developed as a middleware API standard to
support the real-time paradigms of TIME-DRIVEN,
EVENT-DRIVEN (low level and high level),
PRIORITY-DRIVEN processing. The Quality Of

4-8

Service (QoS) is a key attribute in each case. In fact the
delivery of the QoS is central to the MPI-RT philosophy.

The adoption of MPI-RT by ESPADON raises many
issues that need to be investigated further. These are
concerned with the delivery of the QOS and the
efficiency of implementations. Since it is a standard, its
implementation is left to the systems or hardware
vendors. At present, to the authors knowledge, no such
implementations are available for detailed study, except
for emulation on a workstation, though most of the
major vendors do have MPI-RT in their future road
maps. Hence ESPADON is keeping a watching brief on
vendor's developments and investigating how the MPI-
RT API may be implemented within ESPADON to
provide a possible interface to future implementations.
A draft standard for MPI-RT has been issued and is
available on the web [15].

The other tools required for the EDE are more concerned
with the infrastructure, requirements, cost estimation,
EDE control and configuration management. The final
list of tools selected for the whole EDE are shown in
Fig. 8. These additional tools are not critical to the
success of ESPADON but need to be interfaced to the
EDE to support the overall signal processing application
development lifecycle.

Requirements Analysis
(RDD100, DOORS)

COST ESTIMATION
(PRICE)

External
Tools

T. ..■ !*"■ :.. ■"
Matlab

Simulink/RTW
' Algorithm

Prototyping

I g is
I Ssi
1 5«Q

Ptolemy GEDAE

Target- Porting Kit

Functional Design
Architectural
Design
Implementation
(Rapid
Prototyping)

ill u

Range of Target H/W

Fig. 8 EDE Tools Selected

3.2 The EDE Framework
The ESPADON Design Environment (EDE) consists of
the tools and libraries connected through the EDE
infrastructure as discussed above [16]. A technical
working group has been established on the project to
progress the EDE development through the various
revisions, starting with 0.1, the first realisation of a
Rapid Prototyping framework, 0.2, the first update, after
a 'hands on' evaluation and review by benchmarking
teams, and 1.0, the first realisation incorporating Virtual
Prototyping. The requirements placed on the EDE are
that it is based on :

a modular approach consisting of standard interfaces
etc., an open architecture, and basic services (e.g.
key elements).

- existing capabilities/tools: e.g. virtual prototyping
tools provide capabilities of co-design, co-
simulation and co-synthesis,

- low intrusion into existing tools

It should be portable and extensible and provide
functionality that can support the following key
attributes:

Simplify tool usage - the new user should have a gentle
learning curve

Familiar GUI (rather than command line); On line
manual pages - tool selection, usage and style guide;
Common tool start up procedures including user profiles.

Make tools appear more 'professional' - some tools have
an academic/research origin

Login security, tool usage trace logging; Data security,
backup, archive; Design deposition - change control,
code management; IP data/design repository,
capitalisation and reuse; Multi-user support.

Multi tool management and data exchange - some
difficult problems will require the use of several tools at
once

Concurrent use of tools for co-design and co-simulation;
Sequential use of tools - avoid manual re-entry of
intermediate design data.

Tool automation - in some cases existing UNIX or NT
tools can be used but they may need a wrapper

'Scripting' language for driving low level tools.

Other than these attributes, the EDE has to clearly
support the iterative system development methodology
of ESPADON. Consequently there are three specific
viewpoints (users) which govern how the functionality
of the framework is accessed and by whom. These are
self-explanatory, strictly hierarchical, and are the
System Viewpoint (the overall signal processing
application composed of a number of component
developments assigned to particular project groups), the
Project Viewpoint (the signal processing component
developments being undertaken by a project group), and
finally the User Viewpoint (one of the project group
members undertaking a specific task).

To support the above the key elements, Graphical User
Interface, On-line guide, Tool Management & Control,
Repository, Data Exchange, and Trace Information were
identified and designed to build the first version of the
EDE . The GUI is shown in Fig. 9 with the trace
window that records information useful for collecting
metrics and the history of the development.

3.3 V0.1 Version of the EDE
This version has been integrated with the GEDAE tool
and the Ptolemy Tool and will be used for the
benchmarking of an example Sonar application and
example Radar benchmarking respectively [17]. The
choice of the two tools is deliberate so as to provide

4-9

performance and efficiency measurements for cross-
comparison and mutual improvements. The main
objective however is to benchmark the V0.1 version for
rapid prototyping by using two representative
applications.

Flit Edit H«lp

OEDAE ir SPW MATLAB Ptoltmv ConflgM browitr

Tricing and Logging

File Viewer

Current Settings

The User Name is:

The Project Name is:

Set the Design Type

Ida

SMARTTEST

Specification)

Notes

Save and Exit Save Exit

Stop Logging Start Logging

Fig. 9 EDE User Interface

The Ptolemy tool is being ported to a Mercury platform
for the benchmark. The GEDAE tool supports a number
of target platforms (Mercury, Ixthos, Sky etc.) but is
being ported to support a subset of the EUROPRO
platform [18]. Key to both is the board support package
for the target architecture, its adaptability to support
other targets and the overall efficiency. Hence work is
underway with GEDAE to support commonly used real-
time operating systems such that additional processors
(RISCs and DSPs) can be supported. This will enable a
board porting kit to be developed to support a range of
hardware test beds and potentially heterogeneous
systems. An example of the design flow with GEDAE is
shown in Fig. 10.

nnmiwmimmmviMn ™ nM WmmW ill
iiiiiiilithiiiiii >44

M

The first application of the EDE is towards the
benchmarking of the ESPADON methodology and
development process. Two benchmarks were identified
at the outset of the project. These are the
implementation of a beam-former for a Sonar and a
Radar applications (see Fig. 11). Beamformimg is a
generic processing function for which metrics for
conventional developments are known or can be
estimated. A technical document defining the rationale
for, and the definition of the metrics to measure the
ESPADON objectives has been written and a
benchmarking plan drawn [19]. An overview of the
radar benchmarking application is provided in the next
section.

COTS
PROPRIETARY

TEST BED

STIMULI GENERATOR

COMPLEX DEMOtXJLATI

ADAPTIVE) BEAM-FORM«

EXTRACTION A TRAC

-SUPERVISION -
A DISPLAY

COTS of
PROPRIETARY

TEST BED

SPECIFIC
HARDWARE (FPGA)

RAPID PROTOTYPING VIRTUAL PROTOTYPING t
MODEL YEAR IMPLEMENTATION

Fig. 11 Outline of the beamformer benchmark.

3.3.1 The Radar benchmarking application [20]
For the Radar benchmark, an adaptive digital
Beamformer (BF) application for multibeam radar, Fig.
12, will be used.

Plane wave
impinging

re / ^^r—►

8
<D

s"
*2>
D

CD
■n

*y ►

o c
2. >

w J

Fig. 10 Typical Rapid Prototyping Design Flow

1 stripline antenna

Figure 12: Multi stripline receiver antenna array signals
are transformed into a beam pattern in elevation

The function beamformer is part of the functional chain
of an X-(H new NATO) band air surveillance radar. The
antenna of the radar comprises a vertical array of, for
example, 8 elements each of which is a horizontal linear
stripline array of dipoles. The array is used as a transmit
antenna as well as a receive antenna. As a transmit
antenna the power splitter distributes the RF power
among the elements (linear arrays) via phase shifters and
circulators. This results in a transmit beam which
illuminates targets within the desired elevation coverage
envelope. As a receive antenna, each of the 8 array
elements is connected directly to an individual receiver

4-10

and an A/D converter. Each array element is sensitive
over the desired elevation coverage. Elevation beams are
formed by the digital beamformer that performs an 8
point FFT or FIR algorithm on the outputs of the 8
receiver channels. In this way a multibeam receive
system is formed, Fig. 13. The benchmark concerns only
the receiver beamforming function, the transmit
beamforming function is implemented by an analogue
system.

The beamformer is adaptive with respect to the ships
course and speed, and the ships roll and pitch movement.
This results in a phase correction that is applied to the
complex data stream prior to the beamforming, together
with windowing and calibration correction.

The application contains all aspects of a radar signal-
processing element as it is found in modern radar
systems nowadays. This includes mode switching,
synchronous/asynchronous data and control flow.

Adaptive beamforming is characterised by high data
rates (up to 20 Mbytes/sec for each channel/beam) and
corner turn processes. The signal processing architecture
on which the algorithm will be implemented therefore
asks for high-end multi-processor machines with high-
speed crossbar interconnect between processing nodes.
The selected crossbar interconnect has a peak throughput
of 267 MB/s per crossbar connection and also gives the
desired flexibility needed for rapid prototyping in the
sense of ESPADON. For the processing element the 4th

generation Motorola PowerPC processor is selected: the
AltiVec processor. This processor is similar to the
previous version of the PowerPC with a 128-bit vector-
processing unit added, which is well suited for signal
processing algorithms.

Transmit pattern

Figure 13: Example of resulting multi beam pattern in
elevation for an eight channel to six beam beamformer

3.3.2 Principle Benchmark Metrics
As per the iterative development methodology, the
benchmark of the ESPADON process will also be
carried over successive iterations. For each of the
benchmarks, the principle metrics directly related to the

performance of the ESPADON process and performance
will be collated. These in summary are:

Design Cycle Metrics - the reduction in development
time, through software and hardware reuse, productivity,
iterative refinement etc.

Product costs - the reduction of the development costs.
These costs are defined cost to produce and cost to
support.

Product quality - improvement in the product quality
measured by the number of hardware and software
defects, the time to repair, and MTBF.

Other metrics deeemed to be important are:

Tool oriented metrics -the level of integration of the
tools and the ease of use and uniformity of the EDE.

Application complexity metrics - try to capture the
benchmark application complexity, independent of
hardware and software implementation

Product complexity metrics - for each product, for
example, software, hardware, and documentation,
complexity metrics are required to weight the product
efficiency against the implementation difficulty

Product performance metrics - performance of the
products produced is not synonymous with the
ESPADON performance itself. Hence it is important that
the appropriate metrics are collected and analysed.

These metrics will be collated as part of the
benchmarking activity which will be carried out for each
of the three releases of the EDE. The first step will be to
evaluate the preliminary version of the EDE (V0.1)
described above. The results will be fed back to improve
the tools, the EDE framework and the integration. These
steps will be repeated for the next version of the rapid
prototyping EDE and then proceed to the virtual
prototyping EDE.

The final release, Virtual Prototyping version, will not
be benchmarked against two applications, and by two
teams, but against one benchmark application (Radar or
Sonar) and one benchmark team. This is expected to be
sufficient to demonstrate the concept and advantages of
the virtual prototyping process. Virtual prototyping is a
complicated concept to disseminate in a production
environment and to find suitable reference baselines to
compare against.

4 CONCLUSION
The ESPADON project expects to significantly improve
reduced cost and timescales, the process, by which
complex military digital processing systems are
designed, developed and supported. A new design
methodology, and a new development environment, has
been reinvented to support this through reuse, concurrent
engineering, rapid insertion of COTS technology and the
key concepts of rapid and virtual prototyping as
described earlier. The key attributes of the methodology
are a Risk driven spiral lifecycle, encapsulation of the

4-11

"Model Year" concept to mitigate risks by the iterative
development over successive rapid prototypes integrated
with the latest COTS technology, and support for
component Reuse and Capitalisation.

The preliminary version of the EDE to support the
methodology has been implemented, with the GEDAE
COTS tool, and supports the concept of Rapid
Prototyping. Key features are the data flow signal
processing paradigm, the EDE framework and GUI, the
support libraries, and the efficiency of code generators
(communications and processing). The first EDE is
targeted for a range of real-time COTS test beds, the first
being a Mercury system. A benchmarking process to
evaluate the EDE and provide valuable feedback towards
its improvement has begun. It will enable real
behavioural, performance and timing measurements to
be made to feedback into the iterative process so as to
arrive at an optimum implementation.

Such an EDE and Rapid Prototyping environment
provides a number of advantages for signal processing
application development. It enables the collection of
measurement data to provide as an input to virtual
prototyping. The performance data can be used to
correctly size the overall system requirements (hardware
and software). Data can be collated with respect to
benchmarking other COTS components. The prototype
can be used with real data or in the field to validate the
processing. It enables the early and frequent
involvement of the customer so as to adjust requirements
over the development and field experimentation stages.
These advantages offer a significant improvement
compared to the conventional methods for signal
processing application development.

5 ACKNOWLEDGEMENTS
The work has been carried out under the WEAG
EUCLID/Eurofinder programme, Project RTP2.29, with
support from the UK, French and Dutch MoDs and the
participating companies. The authors are grateful for
this support and would also like to acknowledge the
contributions of all the ESPADON team members.

Copyright. This document is the property ofTHOMSON-
CSF, BAE SYSTEMS Electronics Ltd., SIGNAAL,
THOMSON MARCONI SONAR and MATRA BAe
Dynamics France. This paper is based on that by the
author in the Proceedings of the BAE SYSTEMS
Conference on Signal & Data Processing, 1-3 March,
2000, BAE SYSTEMS Research Centre, Gt. Baddow,
CM2 8HN, England, Report No. YD/000140, March
2000.

6 REFERENCES
[1] D. Aulagnier and B. Saget, 'The ESPADON

programme: Environment for Signal Processing
Application Development and prOtotypiNg",
Actes des Journees Thematiques

Universites/Industries du GRAISyHM-AAA-99,
Lille, france, 23-24 March, 1999.

[2] D. Aulagnier, J. Hunink and D. Müller, 'The
ESPADON programme", Proceeding of RADAR'
99 International Conference, Brest, France 17-21
May' 99.

[3] M. A. Richard et al, 'The RASSP Program
Origin, Concepts, and Status - An Introduction to
the Issue", Rapid Prototyping of Application
Specific Signal Processors, Jnl. Of VLSI
SIGNAL PROCESSING SYSTEMS for Signal,
Image and Video Technology, Kluwer Academic
Publishers, Vol. 15,7, Feb, 1997.

[4] G. R. Gladden,"Stop the lifecycle - I want to get
off, ACM Software Engineering Notes, Vol. 7
(2), 35,1982.

[5] B. W. Boehm,"A Spiral Model of Software
Development and Enhancement", Computer, 61-
72, Mayl988.

[6] R. Balzer, "A 15 year perspective on automatic
programming", IEEE, Trans. Software Eng., Vol
11,1257,1985.

[7] J. Pridmore et al, "Model-Year Architectures for
Rapid Prototyping", Rapid Prototyping of
Application Specific Signal Processors, Jnl. Of
VLSI SIGNAL PROCESSING SYSTEMS for
Signal, Image and Video Technology, Kluwer
Academic Publishers, Vol. 15,83, February 1997.

[8] I. Alston and B. Madahar, "The Tool Selection
Process for the ESPADON Design Environment",
Proceedings of the BAE SYSTEMS Conference
on Signal & Data Processing, 1-3 March, 2000,
BAE SYSTEMS Research Centre, Gt. Baddow,
CM2 8HN, England, Report No. YD/000140,
March 2000.

[9] ESPADON Programme Deliverable, ESPADON:
COTS Tools Assessment Summary', BAE
SYSTEMS Research Centre, Gt. Baddow, CM2
8HN, England, Report No. YD/992197/D1348,
Issue 2,10th January 2000.

[10] ESPADON Programme Deliverables,
ESPADON: Tool Evaluation Reports', BAE
SYSTEMS Research Centre, Gt. Baddow, CM2
8HN, England, Report Nos. YD/992344/D1348,
YD/992375/D1348, SIGNAAL 9501 114 059,
Thomson 215 PV 0165, February 2000.

[11] GEDAE, Lockhheed Martin ATL, USA
http ://www. gedae.lmco.com/.

[12] Ptolemy, University of California, Berkeley,
USA, http://ptolemy.eecs.berkeley.edu/.

[13] Matlab, The MathWorks Inc.,
http://www.mathworks.com/.

[14] VSIPL, http://www.vsipl.org/.

[15] MPI-RT, http://www.mpirt.org/.

4-12

[16] ESPADON Programme Deliverable, ESPADON:
System/Segment Design Document', Thomson-
CSF DETEXIS, 1 Bid Jean Moulin, 78852
Elancourt CEDEX France, Report No.
TBU.TN/ELA/ETNI, 98/1104/SSS, 28th June
1999.

[17] Alston and B. Madahar, "Rapid Prototyping",
Proceedings of the BAE SYSTEMS Conference
on Signal & Data Processing, 1-3 March, 2000,
BAE SYSTEMS Research Centre, "Gt. Baddow,
CM2 8HN, England, Report No. YD/000140,
March 2000.

[18] EUROPRO Consortium, EUROPRO Final
Report, Project P21040-HPCN/EUROPRO, VI.1,
Thomson Marconi Sonar, Sophia Antipolis,
France, May 1999.

[19] ESPADON Programme Deliverable, ESPADON:
Validation Plan - Definition of Metrics and
Reference Baselines', Signaal, Zuidelijke
Havenweg 40, P.O. Box 42, 7550 GD Hengelo,
Netherlands, Report No. 9501-113-932, October
1999.

[20] H. Schurer and J J. Hunink, "Rapid Prototyping
of Radar Signal Processing Algorithms", IEEE,
ProRISC 99 Conference Proceedings, ISBN 90-
73461-18-9, 405-412, October 1999.

5-1

United States Army Commercial Off-The-Shelf (COTS) Experience
The Promises and Realities

(March 2000)

James J. Barbarello
Director, Command & Control

Research, Development & Engineering Center
US Army Communications-Electronics Command

Fort Monmouth, NJ 07703, USA

Walter Kasian
Chief, Technology Planning Office
Command & Control Directorate

Research, Development & Engineering Center
US Army Communications-Electronics Command

Fort Monmouth, NJ 07703, USA

Summary: The US Army Communications-
Electronics Command, commonly called CECOM,
has been aggressively pursuing Commercial-Off-
The-Shelf (COTS) materiel solutions for well over
a decade. With that experience, CECOM has
developed a strategy of "Adopt, Adapt, Develop".
Through a series of case studies, this paper will
explain when CECOM adopts COTS directly,
adapts COTS products (by modifying as necessary
to meet operational needs), and develops solutions
when no COTS products will meet the Army's
needs.

AMC: CECOM is one of four Major Subordinate
Commands (MSCs) reporting to the Army Materiel
Command. AMC as it is called, is responsible for
all of the materiel used and maintained by the
Army. One MSC addresses tanks and other ground
vehicles. Another addresses missiles and other
munitions, and Army aviation platforms. Yet
another addresses all items used by the Army
soldier. CECOM addresses all command & control,
communications, computers, intelligence, electronic
warfare, and sensor electronic systems and sub-
systems used in the platforms acquired by the other
AMC MSCs. Based on this mission we good-
naturedly say, "We don't make the platforms used
by the US Army.. .we make them better!"

The Electronics Revolution: CECOM has been
involved in things electrical or electronic for over
80 years. The last 20 years, however, has been a
time of extraordinary change. The immense
progress in commercial technology, especially the
tremendous growth in telecommunications,

computing and consumer electronics (as reflected in
Moore's Law's 18-month evolutionary cycle) has
changed CECOM acquisition philosophy. The
products we had to spend years developing only
two decades ago can now be acquired from various
commercial sources.

With strong emphasis on reducing system
acquisition and sustainment costs, the US military
has embraced (albeit to varying degrees) COTS
solutions as a way to realize those cost savings
while also speeding up equipment fielding. Over
those last 20 years, the use of COTS products and
components in military systems and platforms has
gradually increased. In ground vehicles and
missiles, this use has grown slowly. In CECOM's
products, the use has been surprisingly expansive.

This move towards COTS is even incorporated into
the US acquisition regulations. The 1994 Federal
Acquisition Streamlining act, implemented by the
Federal Acquisition Regulation (FAR) in October
1995, promoted a preference for using commercial
items and directed US Government procurement
teams to address the acquisition of commercial
items as the norm for conducting business.

Two decades ago, the US Military was a significant
customer in the electronics market. As such, it
could mandate to many industries (like the US
microelectronics manufacturers). Today, unique
military business has dwindled to just a small
fraction of the overall electronics markets. In other
areas, however, our buying power has increased.
As a corporate entity, the Army is a major user of

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS" ", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

5-2

computer systems and software. So where the
Army can no longer expect microelectronics
manufacturers to build devices especially for them,
they can enter into arrangements with major
commercial computer hardware and software
suppliers (such as Microsoft Corporation) to obtain
very competitive pricing arrangements.

Adopt, Adapt, Develop: CECOM strives to adopt
commercial products and components wherever
possible. This is especially desirable when the
commercial product or component is offered in
accordance with a commercial standard. In these
instances, CECOM is not tethered to a specific
manufacturer and the impact of technological
obsolescence is greatly reduced.

Adoption of commercial products and components
is not necessarily straightforward or risk free. For
example, even when COTS is adopted, some
evaluation or test is required to determine the
COTS' suitability within the eventual military
system. A laptop computer can be adopted for use
in a command post where environmental conditions
are controllable and within the scope of the product.
That is not the case for extreme temperature,
bounce and vibration environments. Today's
commercial microcircuits are much more robust
than those of 20 years ago. In most instances, even
those products developed expressly for the military
use such commercial devices. However, this does
not apply to orbiting communications devices that
would be subject to electromagnetic damage (of
either natural or other nature). Failure to match the
component or system to the using environment has
proven costly for some commercial companies (as
in the case of satellites damaged by electromagnetic
effects), and could be fatal for the military.

When the COTS product cannot accommodate the
using environment directly, CECOM has chosen to
pursue the adapt route. For instance, a COTS
product may have to be adapted to improve its
robustness or reliability. Industry has periodically
promoted products with immature technology.
Easily breached security, delicate mechanical
structure, or unproven software are but three of the
immature characteristics encountered by CECOM
in commercial products. In these instances,
CECOM will work to adapt that technology to meet
its customers' needs. (In the process, industry (and
the commercial consumer) will benefit from
applying the results of adaptation). One example is
the Global Positioning System (GPS) receivers

adapted by CECOM in the late 1980's from the
products initially developed by Rockwell-Collins
and Magellin. The resultant PLGR (Portable
Lightweight GPS Receiver) made its mark in the
deserts of Iraq in 1991.

Adaptation is also required when the target product
must interoperate with other portions of the military
host system, whether they are other commercial
products or components, or items resulting from
military development. As an example,
Asynchronous Transfer Modem (ATM) switching
became very popular a few years ago. CECOM
desired to incorporate this technology into its
Mobile Subscriber Equipment (MSE)
communications system. The commercial ATM
products, however, had to be adapted to work
within the MSE system (which is a combination of
commercial and military developed sub-systems).

While the Adopt and Adapt approaches work for the
majority of applications, there are instances where
commercial industry will not (or cannot) provide
appropriate solutions. One classical example was
one of our sister MSC's need for a replacement for
the venerable Jeep. The Tank and Automotive
Command (TACOM) attempted to adapt
commercial vehicle technology with a product
called the CUCV. This slightly beefed-up
commercial vehicle failed miserably in field
environments. TACOM then pursued development
of a new vehicle that it labeled the HMMWV (the
venerable "Hummer"). As in many instances, the
military development satisfied the Army's need
while also providing industry with a new product
for their commercial market.

In fact, except in a minority of instances, military
Research & Development investment does not fully
fund military development. Rather, it acts as an
incentive, a "seed", to entice industry to enter into a
dual-use program. In such programs, the initial
development funded by the military results in a
future capability or product that can be
commercialized. The military then uses the
industry's production capacity to fulfill its needs at
reduced cost, resulting in a win-win solution for
both parties. A classical example is image
intensifying night vision devices initially developed
by CECOM and then adapted for other markets by
industry around the world.

CECOM has adopted, adapted, and developed
several products since it began its relentless pursuit

5-3

of COTS solutions. The following four case studies
explain how CECOM has used the Adopt, Adapt,
Develop approach in specific instances.

Case Study #1, CHS: Since the advent of ENIAC
in the 1940's, the military has striven to incorporate
computing. The development of the COBOL high
level programming language was also driven by the
military; the model they used up until the 1980's.
When the Military Computer Family of unique
computers and the ADA programming language
were eclipsed by the ever-expanding commercial
computer industry, CECOM realized it was time for
a change. In the early 1990's the Project Manager
(PM) for Common Hardware and Software (CHS)
found a new way to do business. Against the
conventional wisdom (and significant inertia) of
military developers and acquirers, PM CHS
established a (then) revolutionary acquisition
instrument. Called CHS-1, it was essentially an
"ordering catalog" for commercial computer
hardware and software. It contained products from
mainstream computer suppliers and niche
companies alike. With the availability of this
convenient method for obtaining the latest available
technology, Army PMs began to incorporate CHS
products into their systems. A prime example is
ABCS, the Army Battle Command Systems. In the
latter half of the 1990's CECOM and its Program
Executive Officer (PEO) team members proposed a
new concept to the Army; digitize the battlefield.
At the heart of this concept was ABCS, a system of
tactical battlefield systems for maneuver control,
artillery, intelligence, logistics, air defense, and fire
control. CHS hardware and software (and other
COTS products) were injected into the systems
resulting in the highly successful Task Force XXI
experiment that caused the Army to adopt the
digitization strategy.

In 1999, PM CHS
issued its second
ordering catalog,
CHS-2, administered
by GTE Systems for
the Project Manager.
As indicated in the
CHS-2 Ordering
Guide, CHS-2
provides the tactical
Army and the
Defense Department
with computer
products ranging

CHS2 WriUMgMBfc
«•"•■ ■■

.-..I M

^-~;—■"»"—~

i

*SSS.»n m

m " ■»—.— ~ '

rT"''~ i. ■ ■■' ■

_.* . _w . a 1 unni i p ii.W»~»M

~—•—; " i

!■ «,««.>»._ 3 f373 -"•:-

from hand held to RISC-based server class
machines. CHS-2 products include life-of-contract
warranty and 72-hour return/replacement, 24-hour
hotline, and regional support centers located world-
wide. Along with the computers, the hardware
product mix includes printers, displays, storage
devices and other peripherals. Hardware is supplied
as Version 1, defined as commercial, Version 2,
defined as rugged, and Version 3, designed for a
greater degree of handling and more severe
environments. Wide arrays of software products
(such as operating systems, integrated business
packages, programming languages and
development tools) are also available. Commercial
suppliers of the products include Sun Microsystems
and Microsoft Corporation. As technology
advances, the offered products are updated with
newer ones.

While CHS contains a mix of adopted (pure COTS)
and adapted (ruggedized COTS) products, at the
component level (e.g., circuit boards, memory,
drives, bus, etc.), everything is adopted COTS. At
the sub-system level, adaptation mechanisms
include specially designed exterior cases, specially
designed removable hard disk drive encasements,
ElectroMagnetic Interference (EMI) gasket lens
filtering, special mounting (restraints for high-risk
circuitry), stiffening of printed circuit boards, and
reinforcement of components.

While CHS is more or less taken for granted as the
only way to do business in the computer arena, this
was not always the case. Initially, there was
significant resistance from acquirers and users
alike. The acquirers warned that commercial
products could not meet military operational needs
and would not be sustainable. They predicted that
non-military electronic components would fail
miserably. They warned that relying on a vendor to
repair and return products just would not work. The
users worried about how they would get
replacements when the products failed, and how
they would continue to operate during that down
time. In the final analysis, the established groups
were reticent to change the way they had been
doing business. They were used to risk avoidance,
not risk management! Of course, it would be unfair
to represent the CHS experience as all positive.
There was a "break-in" or "learning" period where
repair and returns were delayed, ordering wasn't as
smooth as it could have been, and, in general, the
?ull promise of CHS was not realized. But since
hat time, the CHS concept has been refined and has

5-4

matured to an extremely effective mechanism for
injecting the latest COTS technology into Army
systems.

Case Study #2, Software Development. There is
probably no more dynamic technology area than
software applications. This area moves faster than
any other and consumes more of our development
and sustainment funding. While we could discuss
specific applications, a more relevant area is the
tools used to develop those applications (and the
standards associated with them).

CECOM is responsible for bringing to the Army an
ever-improving capability to visualize the
battlespace and its contents. In the mid-1990's
CECOM was asked to investigate the feasibility and
utility of 3-Dimensional visualization. At the time,
there were few, if any, commercial 3-D toolkits for
software developers. Also at that time, computing
power was significantly less than today and only the
top-of-the-line machines (like those made by
Silicon Graphics Inc. (SGI) for the Hollywood
movie industry) were even close to being capable to
execute real-time, 3-D visualization.

Our initial efforts used a 3-D software product (the
Virtual Geographic Information System, or VGIS)
developed jointly by one of our sister organizations,
the Army Research Laboratory , and Georgia
Institute of Technology. We adapted VGIS to meet
Command & Control visualization requirements
and then focused on the development of prototype
applications to satisfy the user's needs.
Consolidated into our Battle Planning and
Visualization (BPV) system, the applications
included route planning (using elevation data for
slope analysis and inflection), a cross sectional 3-D
view of routes, a 3-D common tactical picture, and
more. At that time, the only platform capable of
running these applications was the SGI series of
workstations.

As time progressed, SGI released OpenGL, an
industry standard, platform-independent graphics
Application Programming Interface (API). VGIS,
developed much earlier, used an SGI platform-
specific API called IrisGL. The introduction of this
new API created a conundrum. Should we continue
to use IrisGL, or port all of our work to the industry
standard? Since our target hardware platforms had
also changed to Sun Microsystems platforms, we
chose to port our applications (and VGIS) to
OpenGL.

Within two years, SGI began researching graphics
APIs that provided some of the advanced features
we had developed in VGIS. But these features were
immature, and we could not rely on them (yet). We
continued to test the new SGI APIs (as they
matured) while moving forward with BPV, and
provided continual feedback to SGI as we did. A
year later, SGI initiated a collaborative effort with
Microsoft Corp. to develop a new cross-platform
graphics set of API's called "Fahrenheit". Again,
we participated in early trials of the new API while
continuing with BPV. While SGI has scaled back
its efforts on Fahrenheit, we are continuing our
relationship with Microsoft by way of the
Fahrenheit Beta program. We expect the final
product to form the core of our future 3-D
applications.

Our history and approach with the 3-D BPV system
epitomizes the speed and danger associated with
developing software applications. If we had waited
for an industry standard toolset (instead of
beginning our development with a "homebrew"
toolset), we would have not been able to respond to
our customers. On the other hand, if we had then
closed our development environment to new tools
(and not participated in Alpha and Beta testing with
SGI and Microsoft), we would have encountered a
"dead end". Our BPV system would have been
inexorably linked to the SGI hardware platform,
while our customers were using SUN and even PC
platforms. BPV would not have been able to take
advantage of graphic engine improvements.

Our approach was a "middle of the road" strategy.
We kept an open path towards the future, but did
not adopt immature products (which, in the case of
SGI never matured into an actual product). As a
result, our BPV is serving as the basis for new
systems for our customers on various hardware
platforms. And as COTS technologies become
mature enough, we are continuing to integrate them.

5-5

Case Study #3, Batteries: Our first two case
studies focused on software. But while software
has become a major part of today's technology
focus, that software needs hardware on which to
execute. And that hardware needs power in order to
operate. In a tactical environment, you don't have
the luxury of commercial power (or even locally
generated power for that matter). Thus, portable
power in the form of batteries is critical to our
customers.

But high-energy batteries required by our soldiers'
electronics gear are expensive. So much so, that in
the 1990's the Chief of Staff of the Army became
concerned at the high cost of batteries that the
Army used on a routine basis to keep its soldiers
trained and ready. He challenged AMC (and, in
turn, CECOM) to reduce that cost by 50%. After
some analysis, we found that the major contributor
to the cost was a single Army-specific battery, the
BA-5590. This battery powered the SINCGARS
radio (when it was not being powered by vehicle
power systems). With over 200,000 SINCGARS
radios used by the Army, arriving at a solution for
just the BA-5590 had the potential to meet the
Chief of Staffs mandate.

The BA-5590 was a lithium sulfur-dioxide primary
(non-rechargeable) battery with high current and
energy content in a relatively small (size and
weight) package. Any alternative would need to
maintain the same form factor and weight, and
provide the same capacity so soldiers could still
perform their stated missions. CECOM also faced
an additional problem. Although the cells used in
the batteries are essentially commercial, the battery
itself is unique to the military. A commercial
battery manufacturer makes more consumer "D"
cells in a few days than the total yearly requirement
for BA-5590's. Thus, commercial manufacturers
are not interested in this "low-volume" market.
Instead, the Army relies on less than five specialty
houses around the world to assemble its military-
unique batteries.

While the Army did improve the BA-5590 primary
battery (using newer lithium chemistry), a more
interesting aspect of addressing the challenge is
what we did to change the "customer's" consuming
habits. Over the years the Army had used both non-
rechargeable and rechargeable batteries, but it
rarely uses the latter for combat. And since the
Army chose to train as they fight, rechargeables
were not considered appropriate for training either.

Years ago, this made some sense. Rechargeable
batteries were not very good; they held relatively
little energy, took a long time to charge, and could
not reveal how much charge was left to the user.

Since that time, however, newer chemistries (nickel
metal hydride and lithium ion) have become
available. Nickel metal hydride technology was
developed by commercial industry to replace nickel
cadmium rechargeable batteries, thus addressing the
new U.S. Environmental Protection Agency's
regulations governing the disposal of products
containing heavy metals (in this case, cadmium).
Batteries with nickel metal hydride technology
provide 50 percent more energy per weight (39
watt-hours per kg) than the old nickel cadmium and
lead acid systems. They also suffer no "memory"
problems and can be recharged at least 225 times
under field conditions. Lithium ion technology was
also developed by commercial industry. Their
intended application was laptop computers and cell
phones that demanded the most energy and power
in the smallest and lightest configuration possible.
Batteries made with this technology provide 100
percent more energy per weight (52 watt-hours per
kg) than the old nickel cadmium and lead acid
systems, suffers no "memory" problems and can
also be recharged well over 225 times under field
conditions

To satisfy the challenge, CECOM had to
accomplish three tasks. We had to adopt
commercial cells with this newer technology into
our military batteries. We also had to adapt
commercial charging technology to provide a field
recharging system that could recharge a battery in a
relatively short time (about 3 hours, versus the 12
hour charge time of the older, military developed
charging systems that existed
then in the Army inventory).
Finally, to gain customer
confidence, we had to
imbed some sort of "state-
of-charge" system into the
new batteries so the soldier
could get a relative reading
of how much "life" was left
in the battery. (Put yourself
in the soldier's place. If you
were going to literally bet your life on a battery,
would you guess how much charge was left, or just
throw out the one you had before you left on your
mission and take a new one? If you did, you'd be
throwing away a lot of unused, expensive capacity).

5-6

CECOM began by building prototype batteries with
commercial (lithium ion and nickel metal hydride)
cells, but in the
existing military
configurations.

In parallel, we
contracted for
the development
and production
of a new field
charger that used
commercial PIC
microprocessor
technology.
(The PIC micro-
processor is readily available, inexpensive, and has
its instructions stored in erasable programmable
read-only memory. This approach allowed us to
change the charger's characteristics several times as
we built a few chargers, took them to the field, got
feedback, and made changes). Finally, we
incorporated a 4-Light Emitting Diode (LED) state
of charge indicator. The LEDs indicate 25%, 50%,
75%, & 100% of capacity, are inexpensive, and
give just the right level of indication to the soldier.

As our experience grew, we produced more
batteries and gave them to a series of fielded units
(along with the new "rapid" chargers). Skeptical at
first, the units eventually gained confidence in the
new rechargeable system. They also realized that
they were saving significant money by not having
to buy primary batteries. After two-years of this
type of trial, everyone was convinced enough for
the Army to formally adopt the rechargeable system
for training. In the end, CECOM and AMC more
than met the Chief of Staffs challenge.

CECOM was able to adapt commercial lithium ion
cell technology to its military unique batteries
(similar to our adaptation of commercial
microcircuits to our military computing needs). In
the process, an interesting synergy evolved between
CECOM and industry. While the cell technology
provided greatly improved capability, it did it at
temperatures only down to 0°F. Since the Army
needed to operate much below that temperature,
CECOM had been working on an innovative lower
temperature electrolyte technology. That
technology, developed by CECOM, was shared
with industry that, in turn, were able to offer us
further improvements in low temperature operation
to -40°F.

CECOM was also able to adapt commercial
charging and microcircuit technology to both the
tasks of charging and determining the state of
charge of military unique batteries.

But most important, CECOM was able to change
consuming habits and old (albeit somewhat
deserved) prejudices against rechargeable batteries.
We were able to do this through a partnership with
industry that provided us with not only chemistry
improvements, but with the capability to work with
us to develop, produce, deploy, and modify in a
responsive, time-sensitive fashion.

Case Study #4, Land Warrior: In the early 1990's
CECOM demonstrated a concept for bringing
information technology to the soldier. This initial
concept eventually became known as Land Warrior
(LW). The envisioned Land Warrior system's
capabilities would allow the dismounted
infantryman to move and communicate rapidly on
the battlefield. He would know at all times his own
location, those of his squad members and of the
enemy, regardless of terrain or weather conditions;
as well as what his squad or team leader expects
him to do. Land Warrior would represent
advancement in effectiveness over the way today's
infantry rifle squads perform collective tasks, since
today they still rely heavily on verbal
communications (shouting at each other) and hand
and arm signals to perform collective tasks.

To achieve this capability, a contract was awarded
in the 1990's to Hughes Aircraft Corp. (later
acquired by Raytheon Company) to mature the
concept into a fieldable system. Based on various
requirements from the user (and the fact that the
commercial sector was in its infancy in the
wearable computer market, and laptop/notebook
PCs were about the size of briefcases), Hughes set
out to apply a commercially available
microprocessor chip, but develop a unique, real-
time operating system. After several years and over
US $100 Million, the program had not progressed
to the fieldable system stage and the US Congress
was considering terminating Land Warrior.

In late-1998, a new PM was assigned (COL Bruce
Jette, PM Soldier). Although the PM was
associated with another MSC, he came to CECOM
(where he had previously served) and asked us to
perform a third party assessment of the LW
program. Our assessment showed a high risk with
the existing approach. The PM then contracted

5-7

with a Silicon Valley firm to perform another
independent assessment (this time with a purely
commercial eye and focusing on the technology
being employed). That firm came to the same
conclusion as CECOM. In 1999, the PM asked that
Silicon Valley firm to quickly put together a
demonstration of what might be possible with
today's technology. He also asked CECOM to put
together a support cell to bring our technology
expertise and COTS-based thinking to LW.

The resultant system is a combination of the adopt,
adapt, and develop aspects. Before we identify
which is which, let's take a look at the new system
itself.

At the core of the integrated Land Warrior system is
a small, wearable, computer-radio subsystem,
mounted on the soldier's lower back. The current
version of Land Warrior uses a small, portable
commercial-based IBM-
compatible computer,
and a Windows-based
operating system. This
shift to an open
commercial architecture
will significantly reduce
the cost and effort to
continually develop and
sustain the software. It
will also make future
product upgrades easier.
Finally, it will help us to
fine tune and tailor the
system, both as
technology advances,
and as users adapt to the
system, identify new
needs and propose new
capabilities.

The computer displays
imagery that the soldier
views through a helmet-mounted, monocular
viewfinder covering one eye. The Land Warrior
soldier sees a miniature computer screen - a
"heads-up display", that shows digital maps,
graphics, and text in a Microsoft Windows, pull-
down-menu format, as well as imagery from the
Thermal Weapon Sight or daylight video sight. The
view he gets is from the direction at which he points
his weapon. The display allows the soldier to find a
target and shoot his weapon accurately from a
concealed position using either the thermal or the

video sight, exposing only his hands. He can even
fire his weapon from behind the comer of a
building without exposing his head.

The "mouse" control for the computer's menu-
driven displays is a small button on the side of the
weapon that the soldier manipulates using the
fingers on his trigger hand. Each soldier, using a
helmet-mounted microphone that sits in front of his
mouth, can talk with others in his squad via secure
voice radio, akin to an intercom system on an
aircraft. Using the pull-down menus, he can
digitally transmit spot reports of enemy activity or
capture and send a video or thermal image of a
target, either to squad members or to higher
echelons, all using his mouse control. The soldier
can even digitally transmit an automatically
formatted "call for fire" (for example, to the
artillery), and relay the target's coordinates at the
touch of his fingers. In contrast, today's
infantrymen must use paper maps and verbally
convey spot reports, which are ultimately relayed
by radio up the chain of command by the squad
leader, and through echelons, before a digital
linkage can be established.

The Land Warrior squad leader and his two fire
team leaders can communicate with squad members
from covered positions using voice radio, or silently
using text messages. They are also equipped with a
hand-held, flat-panel display that can be used to
send orders silently. For example, the squad and
team leaders can "write" on the hand-held map
display to overlay graphics or short text, such as
circling the target objective and marking the route
to it. These graphics can then be transmitted to
squad members' heads-up displays.

A built-in Global Positioning System receiver
provides the soldier's position location to the
computer, which also receives location reports from
other soldiers in the squad, and are shown as icons
on a digital map display. The Land Warrior can use
the laser range finder to pinpoint a new enemy
position, which then appears as an icon on all of the
squad's map displays.

The computer is connected to the Thermal Weapon
Sight, which is atop his standard rifle. The
computer is also linked to a combined laser range
finder and digital compass, with a video TV camera
sight (also mounted on the rifle).

To see if we were on the right track with the users,
13 systems were built and delivered to soldiers for
their evaluation. Although the initial systems did
not meet all of the user's requirements, they did
meet many of them. Today, an iterative process is
in place to continually evolve and build successive
and successfully functioning Land Warrior systems,
with a Windows-based, IBM PC-compatible COTS-
adapted computer, with commercial interface
standards, packaged within a rugged case. In fact,
55 experimental systems will be demonstrated
during a Joint Contingency Force exercise, in
September 2000. This approach of getting products
into the hands of soldiers quickly so they can
provide feedback in real time to tell us what's right
with the system and what needs to be better, is key
to applying information age technology.

So now, let's take a look to see what was adopted,
adapted, and developed. In the adopt arena, the
computer was replaced with COTS computer
components (albeit reconfigured in a customized
case). In the process, the system gained processing
speed, storage (from 500 MB to over 1.5 GB), and
the ability to interface with today's peripherals over
IEEE standard interfaces. The software is now
being developed with commercial software
development tools and has the look and feel of a
"windows" environment that many young soldiers
are intimately familiar with these days. That
software will execute in a COTS windows-based
environment.

In the adapt arena, the GPS location device is a
COTS-adapted product that will include the greater
precision of military GPS with protection from
hostile intent. Also being adapted is a COTS heads-
up display that replaces the older plasma
technology but will be environmentally hardened to
withstand the rigors of the foot soldier (including
the ability to survive when the soldier parachutes
into the area of engagement). Further adaptation is
occurring in the Local Area Network (LAN) arena.
Soldiers in a squad are connected via a COTS-based
wireless LAN that will have higher levels of
security than commercially available.

In the develop arena, the soldier's weapon is a
standard Army issue product that will eventually be
replaced by a new generation weapon currently
under development. Then there's the laser
rangefinder (developed by Raytheon) and a
standard Army-developed and Army inventory
thermal weapon sight.

This combined strategy resulted from the needs to
inject the latest technology into the system, be
interoperable with the ABCS system, and accept the
realities of what can be accomplished now. A not-
insignificant aspect of how this was accomplished
in such a relatively short time (when lengthy,
previous attempts were not successful) deals with
working with the user. Although operationally
desirable, many of the requirements cited by the
user were driving costly, non-COTS solutions. By
working with the user to perform a no-nonsense
needs/benefits tradeoff, the PM and CECOM were
able to redefine the system. For instance, the user
had identified that the time between a soldier being
identified and being informed of that fact was
originally less than 0.2 seconds. That single
requirement drove Hughes to opt for a real time
operating system, since the notification had to be
routed through the computer. After pragmatic
consideration that the soldier's physical response
time was significantly greater than 0.2 seconds, the
user agreed to a longer response time. This allowed
the PM to adopt a commercial computer with a
commercial operating system.

Clearly, Land Warrior represents a microcosm of
thoughtful application of the adopt, adapt, develop
strategy. But the key lesson learned is that human
communication, and not technology, is the critical
factor in how (or even if) a program is able to reap
the advantages of COTS.

Lessons Learned: While the scope of intensity
will vary with the technologies being addressed, the
pursuit of COTS is clearly preeminent in CECOM's
lexicon. But blind adoption of COTS is neither
technically desirable nor fiscally sound. Rather, we
pursue balance between adopting, adapting, and
developing when the other two options do not meet
our needs.

Adopting is not free. Funding must be reserved for
testing the to-be adopted COTS. It must be capable
of fitting within the current system constraints (and
every existing system will have constraints). With
these conditions met, adopting is the quickest and
least expensive approach. A non-fiscal benefit is
increased customer satisfaction, since customers
will continually compare your solutions to what
they can acquire on the open market.

Adapting in a military environment is pragmatically
the most common solution. Adapting will usually
include some associated level of adoption at either

5-9

the component or sub-system level. Adapting is an
optimum mix of leveraging commercial investment
and the customer-environment understanding of
your organic workforce. While adapting may not
seem as quick or inexpensive as adopting, when the
user environment is factored in, it is.

Developing must be reserved for those unique
circumstances where no commercial solution can
form either the total answer or a foundation for the
answer. Development can no longer be considered
a stand-alone effort; in today's fiscal environment,
this is a sure recipe for disaster. Rather,
development must be pursued as a partnership
where industry is "seeded" with an initial
investment (of money or technical knowledge).
Properly nurtured, that seed will grow into a
solution that services your customers and provides a
cost-effective manufacturing base.

Only One Piece Of The Puzzle: Technology, that
is. Through its significant experience in the pursuit
of COTS, CECOM has learned that customer
requirements and expectations are as important (or
possibly more important) than the pure technology.

As with CHS (Case Study #1) and batteries (Case
Study #3), customer pardigms must be understood
and thoughtfully modified. Nothing breeds success
like success. Early, moderate successes are much
more important than the 100% solution that takes
too long.

Many military customers identify requirements
without the benefits that moderate trade-offs could
bring. As with Land Warrior (Case Study #4), a
simple trade-off in response time can allow system
design that opens up the system architecture,
provides a better user interface and, in general,
holds the potential for greater, longer term user
satisfaction.

The Difference Is Blurring: As we indicated in
Case Study #2, the rapid and fluid software
environment that many associate exclusively with
the commercial sector is just as applicable to the
military. In fact, customer expectations demand no
less. And this shift extends to the information
technology hardware associated both directly with
software (like computers and peripherals) and
indirectly (like software-programmable radios).
The decisions we make in development drive the
long term future of the resultant product. Selecting
a COTS solution is not a trivial matter and can drive

life cycle costs significantly. To make the most
informed decisions, we must monitor COTS
product forecasts like the stock market, and be
ready to shift when necessary, or potentially pay the
price for remaining static. A reminder of this was a
past decision to equip all of the Navy's recreation
centers with higher quality "Betamax" VCRs,
instead of VHS, right about the time VHS became
the consumer product of choice. Inclusion of
commercial products can potentially reduce life
cycle costs in military system or platform
development, by leveraging in the commercial
product's economies of scale, but only if there is an
"active" economy of scale to work with.

Conclusion: The reality is that the significant
investments being made by the commercial sector
in Information Technology are orders of magnitude
greater than the US military can afford to drive or
influence. CECOM has recognized this and
embraced an adopt, adapt, develop philosophy. We
leverage commercial investment by anticipating
(through technology forecasts) and building
meaningful, regular interactions with industry. In
these ways, we can better anticipate the direction
the market is going so we can match technology
trends to soldier's needs.

But as the four case studies presented infer, any
decision "today" to adopt, adapt or develop, may be
different "tomorrow". There is no specific formula
we can calculate because the variables are
continually changing. But some things are
constant. We ensure continual interaction with the
customer. We value continual technical curiosity
and acumen. We foster a continuing demand to not
stick with yesterday's process. And, above all, we
continually keep a balance between being the
earliest-adopter and one who stands still. Because
in the business of equipping the US soldier with the
best technology in the world, the consequences of
doing it wrong (or doing it too late) can be, literally,
deadly.

6-1

The Coordinated Defence Role in Civil (Telecom) Standardisation
(February 2000)

JP Thorlby
NATO C3 Agency

PO Box 174
2501 CD The Hague

The Netherlands

Abstract

The "ruthless pursuit of COTS" is increasing the
penetration of unmodified COTS1 technology and
standards in the military domain. Therefore, as the
defence community becomes more reliant on off
the shelf products and standards, it is increasingly a
stake-holder in the results of the civil process. This
should lead to a motivation to be a proactive
participant in the civil process by which the civil
standards (and technology) are developed.

This paper presents the outcome of a recently held
workshop (29th November 1999) organised by the
NATO C3 Agency and hosted by the European
Telecommunication Standards Institute (ETSI). The
agenda, report and presentations are available at
http://www.nc3a.nato.int. This paper discuses ETSI
specifically, but the arguments and principles also
apply to other standards fora.

It was proposed that there should be a coordinated
action within the defence community of the
Alliance with respect to civil standards which will
encourage the emergence of a harmonised defence
market for civil telecommunication products
(COTS).

This paper will discuss the possibilities and
significance of defence requirements capture within
the context of civil telecommunication standards
development.

Acknowledgement

Whilst the content of this paper is the responsibility
of its author, the whole is necessarily influenced by
the many views excellently articulated by the
workshop speakers and participants.

Introduction

The role and benefits of standards (in the context of
this paper, telecommunication standards
specifically) are generally accepted in both the civil
and defence communities. In the military context,
standards enable interoperability between systems
(in particular, systems of different nations operating

in a coalition setting), reduce dependence on single
suppliers and permit systems to be upgraded whilst
enabling interoperability with legacy systems.

In the civil market, standards enable
interoperability between competing vendors,
increasing the effective size of a market which
provides economies of scale, in turn enabling
reductions in price which in turn fuels market
growth. One spectacular recent example is the
mobile technology GSM, which through a regional
standardisation activity created an initial market
across Europe which is now global. The market
size has turned the user (mobile) terminal into a
commodity product (terminals are often given
away). The market has grown from its inception
(1991) to 450 million users currently, and is
projected to grow to 1.6 billion users by the year
2010. The total number of mobile (all technologies)
users is projected to exceed the number of fixed
telephones by the year 2004.

Defence users already make significant use of civil
standards and COTS equipment. This trend is likely
to increase in the future due to continuing
downward pressure on defence spending, increased
'operations other than war' (e.g. 'Peace Support
Operations') and rapid advances in technology.
One example within the NATO context is the
adoption of ISDN standards in the NATO core
network (NCN).

If these trends are accepted, defence users (and
operators) should recognise that they are
'stakeholders' in civil standards and it therefore
seems logical that they take a greater interest in the
process by which those standards are derived, and
take steps to enter their specific requirements
alongside all the other user requirements.

This paper first describes a workshop organised to
address this subject area, drawing from the
presentations and associated discussion. The paper
then goes on discuss the issues which arise, finally
making some conclusions and specific proposals
for further activity.

Commercial Off the Shelf Technology

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

6-2

Workshop

The NATO C3 Agency organised a workshop
entitled "Defence Markets for Telecom Standards
and Technologies". The workshop addressed the
following general questions:

• How can the ETSI community capture the
requirements of the military community in an
effective manner?

• How can the NATO community understand the
working methods and procedures of ETSI?

• How can industry effectively relate defence
market requirements to civil market
requirements?

• How can national defence agencies be
facilitated to work within civil standards
bodies?

The workshop brought together a representative
community in an environment which encouraged
free discussion It was structured around a
framework of presentations from both civil and
defence communities.

There were 55 delegates registered, from 12
countries and 32 organisations. The breakdown by
type of the organisations is shown in figure 1.

Organisation by type
Others Government

Figure 1: Organisation by Type

The breakdown of representation by country (of
organisation rather than individual) is shown in the
figure 2.

Organisations by Country

H OK CH BE

Figure 2: Organisation by Country

ETSI

ETSI is a regional telecommunication standards
organisation. Its work programme is driven (and
mostly funded) by its membership (730 member
organisations from 50 countries, of whom 51% are
manufacturers) and they in turn are driven by the
perceived 'market requirement'.

Considering the diversity of members, many of
whom will eventually compete in the market place
to supply products and services, the challenge is
always to reach consensus - which ETSI defines as
"the lack of sustained opposition". Occasionally
voting is required on technical issues when there is
a failure to reach consensus.

ETSI is open (its work and standards are freely
available at http://www.etsi.org) with only current
temporary working documents restricted to member
organisations. ETSI works in partnership and has
cooperation agreements with many other
organisations, for example; UMTS Forum, GSM
Association, ATM Forum, IETF, WAP, IPv6.

The desire by several regions to work together for a
single global standard for mobile communications,
building on the success of GSM (an ETSI standard)
took ETSI beyond its normal geographical region
and so the 3rd Generation Partnership Project
(3GPP) was established. This was created outside
ETSI and overcame the limitation that ETSI
members without a European base have no right to
vote (although Associate members may participate
in the technical work).

The 3GPP (http://www. 3 gpp.org) is a partnership
of regional standards developing organisations;
ETSI (Europe), Tl (US), ARIB (Japan), CWTS
(Canada), TTA (Korea) and TTC (Japan) along
with market representation partners (GSM
Association and UMTS Forum). This shows the
range and flexibility of cooperation possible and
already practiced.

Standardisation therefore offers an open consensus
building forum for pre-competitive R&D and thus
also provides a 'load sharing' mechanism for the
development of technology in addition to the actual
writing of the standards.

ETSI is currently undertaking a review of its future
role, and giving careful consideration to how it can
best respond to the 'internet challenge', and work
with global partners and streamline (speed up) its
standardisation process. One recommendation
which is currently for further study is the possibility

6-3

of ETSI facilitating the creation of closed special
interest groups, which create their own rules.

ETSI is interested to improve working with the
defence community.

Requirements Capture in ETSI

ETSI operates a contribution driven culture.
Technical meetings are open to full and associate
members and others by arrangement. Where these
arrangements prove inadequate for the target
market, a partnership (such as the 3 GPP) may be
established external to ETSI.

Standard development in ETSI undergoes a
'requirement capture' phase' and often there is a
sub-committee (or working group) dedicated to this
process. For example in the Technical Committee
(TC) SMG (Special Mobile Group), sub-technical
committee 1 (SMG1) is responsible for specifying
service requirements, which are then developed by
the remaining sub-technical committees. In ETSI
Project (EP) TETRA, working group (WG) 1 is
responsible for requirements capture, and the
requirements are then translated into standards by
the remaining working groups within EP TETRA.

The emerging ETSI DIIS (Digital Interchange of
Information and Signaling) standard is targeted at
small communities of users (taxi firms, private
security guards, retail outlets, etc.) who collectively
do not have the resources (or expertise) to attend
standards meetings. In this case the manufacturers
need to do extensive market research to capture the
user requirements (note that market research is
closely related to requirements capture). The
manufacturers are using an 'integrated product
research process' in the standards forum.

The opportunities to enter requirements into ETSI
standards are therefore:

• Direct participation in the technical meetings.

• Representations to participating manufacturers.

The effectiveness of the contributions are based on:

• The associated business case (cost of
implementation versus increased market size).

• Technical merit.

• Being present and making the case.

The military have a broad range of requirements,
many of these map readily onto existing civil
market requirements (sometimes they may differ
only in the terminology used). Some defence
requirements may only have a minor (if any) cost

impact, or actually improve the civil market
opportunities. For Example, the workshop
discussed the civil requirement for priority and
preemption: the military view that there was not a
civil requirement was countered by the civil view
that there was, and that some ETSI standards
already incorporate these features (e.g. TETRA and
GSM-R).

Technical committees in standards fora often have
difficulty receiving direct input from users, and
user representatives may therefore make a valuable
and welcome contribution.

Advantages

The advantages for the defence community of
working closely with civil standards are manifold.
Standards are already seen and accepted as an
important component to achieve interoperability.
They facilitate interworking and interoperability
between current, future and legacy systems
(standards tend to evolve more slowly than
technology). They facilitate interoperability
between different vendors equipment, increasing
the freedom for competitive initial procurement and
competitive mid-life upgrade. They facilitate
interoperability between different nations in
coalition operations. Standards provide economy of
scale (through cooperation) in the development of
new technology. Standards give consumers
increased confidence to invest in new technology,
thereby encouraging market development.
Standards are the essence of communication
systems (in that communication systems must
interoperate in order to communicate!)

Standards fora offer a ready made environment for
consensus building. They provide the involvement
of industry for free (and access to key people
within companies who might otherwise be difficult
to get hold of). They provide a place to expose,
discuss and trade off and refine requirements, in
cooperation with and with inputs from industry - in
the spirit of recent approaches to 'smart
procurement'.

COTS equipment which has been developed in
conformance to standards which have successfully
captured or (more realistically which have partially
captured) defence requirements will more likely be
a cost effective solution than if those standards are
developed without any input from the defence
community.

Being present in and aware of developments in
standards fora additionally gives advance
knowledge of new developments, typically 1-2

6-4

years in front of the appearance in the market of
products. It also gives insight into the technical
capability, technical options and technical
limitations of the developing technology.

Standards are only a part of technology
development and may offer many implementation
options. Defence use of equipment built to a
particular standard may be facilitated by simply
specifying a recommended option profile (i.e.
which set of options best serve the defence
application). The ability to do this requires
familiarity with the standards and the likely stance
by the various manufacturers on each option. Good
judgement will be facilitated by being present when
the standards requirements were discussed and the
options presented for inclusion.

Many organisations participate in standards for
credibility - to be present when the standards are
formulated - 'table stakes'.

NATO and Standards

NATO has for many years recognised the
importance of standards, and the necessity to use
existing standards wherever possible and it works
towards this end within the NATO C3 Organisation
(through the various sub-committees) through the
production of 'standards agreements' - STANAGs.

In areas where existing standards are not sufficient
the nations may work together to create new
standards, within the NC30. The alternative is to
accept proprietary technology.

Whereas NATO policy with respect to existing
standards is clearly defined, the action with respect
to standards which only partly meet requirements is
not clearly defined and the methods of dealing with
the associated 'requirements gap'.

Challenges

Drawing together for mutual advantage the
standards creating activities of NATO and
standards developing organisations (for example
ETSI) presents several challenges.

The language, culture and processes of NATO
standardisation may appear quite different from the
language, culture and processes of civil standards
fora, such as ETSI. The technical experts and
operational requirements community in NATO may
not be familiar with the working procedures and
methods of ETSI.

The members of civil standards bodies are not in
general familiar with the defence market
requirements, decision making or procurement

processes. Even where a manufacturing company
has interests in both civil and military markets,
often there is a dividing line between these two
communities within the company.

The first challenge is to build a bridge between
these two communities. To relate the commercial
"business process' to the military business process
('doctrine'), the commercial 'market research' and
'market requirements' terminology to the military
'operational requirements' and 'user requirements'.
The challenge is to overcome the 'natural resistance'
to commercial technology which exists in the
military community, to separate out those technical
areas where differences of approach are not
reconcilable and to work together in all the other
areas. The military always see an enemy, and
therefore will never willingly expose a weakness.
This concern must be addressed for the defence
community to work effectively in civil standards
fora. The challenge is to separate the parts of a
defence requirement which have security
sensitivity, from those which do not.

The challenge which exists in both civil and
military communities is the reluctance to own
(provide resources to support) the participation
(effort) in activity related to standards, since this
participation makes no immediate contribution to
profit (or operational capability) and consumes
resources. The value of the activity may only be
realised in the long term, and is difficult to quantify
in general. This is exacerbated when the outcome
of a democratic consensus building process (which
standards development inevitably is) may not meet
100% of the requirements of one organisation.

It is important to recognize that because defence
markets are relatively small in numbers terms, the
ability to guarantee success in having requirements
adopted does not exist. This often gets translated
into an objection to any involvement in the civil
standards process, therefore denying all of the
benefits because 100% success cannot be
guaranteed. The challenge is to determine a
balanced approach - measuring resources against
realistic outcome. Standards are created for many
user groups which may be individually small (for
example the DIIS standards described above).
Many companies participate which are small. No
single organisation (user, or manufacturer) can
reasonably expect to achieve 100% of its objectives
in a consensus building forum, but this does not
prevent them participating.

The challenge is to maximise the effective
coordination within the defence community, in

6-5

order to increase the chance of success. This
implies agreement within the defence community
on at least some requirements, followed by
coordinated working within the chosen standards
body.

Potential Areas for Collaboration

This section identifies possible areas for future
closer working between civil standards bodies and
the defence community within NATO. Some areas
are clear opportunities to develop or 'fine tune'
existing standards, some areas are more closely
related to research activity and the scientific
programme of work.

Strategic Tactical Interoperability

The development of the standards agreement for
the Digital Strategic Tactical Gateway (DTSG)
which is essentially an interface specification
between ISDN and tactical networks (which may
include STANAG5040 or STANAG 4206
gateways) may result in requirements for small
enhancements to the ISDN standards. The DSTG
(STANAG 4578) could be developed inside the
framework provided by (for example) ETSI,
alongside 'change requests' to ISDN specifications.

Advanced Network Architecture

ETSI has a number of projects which are
addressing and developing advanced network
architectures as part of new standardisation
activities. For example the 3rd Generation
Partnership Project (3GPP) is necessarily
addressing the evolution of the core network
technology (currently ISDN based), taking into
account (for example) internet (IP), mobile internet
(MobilelP), and ATM. ETSI Project TIPHON
focuses on voice communication and related
multimedia aspects as required to enable
interoperability within IP based networks and with
other types of networks. ETSI Project BRAN deals
with broadband radio access networks.

Personal Communication Services (PCS)

ETSI is responsible for the GSM standard, is a
partner in 3rd Generation standards (3GPP)
development, is responsible for TETRA (which is
being considered by many nations for various
military applications.) Aspects of TETRA
implementation may still be open for
standardisation work, particularly in the area of
security. The proposed broadband successor to
TETRA is in the very early stages of development
(DAWS) and therefore now open to users
requirements input.

Summary

Telecommunications is developing at a fast pace,
particularly in the civil domain.

Defence users increasingly make use of civil
standards and equipment procured to civil standards
and therefore are 'stakeholders' in those standards.

The resources available to the defence community
to invest in proprietary solutions in order to fill the
'requirements gap' are diminishing.

Coordination within the defence community with
respect to working with standards will result in
efficiency gains and increased effectiveness.

Standards organisations provide a consensus
building forum with industry.

Conclusions

NATO and the NATO nations should give due
consideration to areas of technical work which may
be effectively progressed in cooperation with, or
within civil standards bodies such as ETSI, and
reduce to a minimum the 'proprietary
standardisation' activity which currently occurs.

A coordination activity should be started within
NATO to facilitate and encourage defence
participation in civil standard bodies.

6-6

NATO

The Coordinated Defence Role in Civil
(Telecom) Standardisation

Dr Paul Thorlby

Tho "Ruthtot» Pursuit of COTS" 1ST Pan«! Symposium
April 2000

ouncLAaameß

Presentation Structure

■ Background
• NATO C3 Agency Workshop and ETSI
•ETSI
■ Requirements capture in the SDO context
• Advantages
• Challenges
• Potential opportunities
• Summary & Recommendations

umiMCUHUfm

Background

• Standards promote
• Interoperability - horizontal and vertical
• Market development
• Competition

• Military users use COTS built to civil standards
• increasing trend especially in telecom and IS

• Defence community therefore:
' Is a stakeholder in civil standards
• Has an interest in standards development process
• Has an interest to input requirements to standards process

NATO UNClASafKD

Deployed Mobile Communications

HATO UMClAtWniD

Deployable
COTS Mobile Access

TO UHClAMWttD

Defence Markets for Telecom Standards
and Technologies

• Workshop at ETSI on 29th November 1999
• http://vnww.nc3a.nato.int/news.htm

• Representative - 32 organisations (government, manufacturer.)

Organisation by typ«

6-7

Workshop Participation

■ Representative - 55 delegates from 12 nations:

iaroifc:iimc

Workshop Addressed

• How can ETSI capture defence requirements effectively?

■ How can NATO understand and relate to ETSI processes?

• How can Industry relate defence requirements to civil requirements?

• How can Defence community by facilitated to work in civil standards?

By

Assembling representatives from all communities
Encouraging free discussion around structured presentations

 imtpHivw guJUiLLHWiii

ETSI

• A regional telecom standards developing organisation (Europe)
■ Produces standards which are used globally (e.g. GSM)
• 730 member organisations from 50 countries (51 % manufacturers)

• ETSI is
• Open (standards are freely available at http://www.etsi.org)
■ Market driven
• Pre-competitive cooperation
• Forum for building consensus

• Consensus = 'Lack of sustained opposition'

• Prepared to partner and cooperate with many organisations/fora
• e.g. IEFT, UMTS, GSM, WAP, IPv6, ATM Forum, 3GPP (http://www.3gpp.org)

int April XOO AUTO UNCLA aanED

Requirements Capture in ETSI

• Contribution driven
• Technical meetings are open to all members (and others by arrangement)
• Often there is a sub-committee/WG devoted to requirements capture'

• e.g. SMG1 (for GSM), EP-TETRA/WG1 (forTETRA)

• Enter requirements:
• Direct participation in technical body
• Work through manufacturers who participate directly

• Effectiveness depends on:
• Being present to make the case
• Technical merit
• Perceived market requirement (business case)

J M^<WI NATO UNCLAIHmED

Advantages

■ Standards Body provides
• Ready made forum for consensus building
■ 'Free' Industry participation
• Opportunity to trade off and refine requirements in COTS context

• Future COTS equipment
■ Better fit to defence requirements

• Better informed
• Opportunity to see what civil technology is coming...
■ Insight into parts of a standard which may be implemented
■ Identify'interoperability loopholes'

• Credibility
NATOUNCLAMWCD

Challenges

• Overcome
• Cultural and language differences between civil and military communities
■ Ignorance in both communities of the other's processes and priorities
• Differences in timesca.es and procurement methods
• Reluctance to 'own participation in standards development1

• Relate
■ 'Business process' to 'Doctrine'
• 'Market research' to '(operational) requirements capture'

• Separate
■ Security sensitive aspects from non sensitive aspects

Coordinate defence participation within the Alliance!
Mrouwcusxneo

6-8

Potential Opportunities

• Digital Strategic Tactical Gateway (DSTG) STANAG 4578
• Produce within civil SDO?
• Propose enhancements to ISDN?

• Advanced network architectures (NGCS evolution)
• Conduct technology assessment/research in context of

• 3G, (ATM and IP) developments?

• PCS (Personal Communication Services)
■ Adopt/adapt for military - enhance security for end users?
• GSM, TETRA (and APC035), DAWS (and APC034)...?

Summary

• Civil telecom technology is developing very quickly

• Defence users increasingly use COTS and therefore become stakeholders

• Proprietary solutions for the 'requirements gap' are expensive

• A Standards body is a ready made consensus building forum with Industry

NATOtMCtAWmÖ

Recommendations

• NATO and Nations determine opportunities to progress technical
activities within civil standards organisations (consider this a new
mode of working)

• NATO provides a forum for coordinating such activity where
appropriate

O (jNCLOSftflED

7-1

Risks by Using COTS Products and Commercial ICT Services
(March 2000)

Susanne Jantsch
IABG mbH

Einsteinstrasse 20
D - 85521 Ottobrunn, Germany

Introduction

Among the requirements influencing today's
procurement of new information and communications
systems, the most prominent are

• cost effectiveness

• use of the latest developments in information and
communications technology (ICT)

through the whole lifetime of a system. This can no
longer be achieved in procurement procedures as they
used to be, with long planning and development phases,
resulting in proprietary products based more and more
often on out-dated technology at the time they go
operational. Also, storage or provision of spare parts for
and maintenance of such fully or mainly proprietary
systems, as well as the education and training of
personnel for their operation and maintenance, are
increasingly cost intensive.

The alternative and inevitable approach is the consequent
use of COTS products, allowing for easy and timely
release changes and introduction of new hard and
software versions when they come to market, paired with
the consequent outsourcing of all those services which
are available with comparable or higher quality by non-
military providers, allowing usually to choose among
competitive offers.

However, though on first view this new way of
procurement seems to perfectly meet the above
mentioned requirements for cost effectiveness and
application of the latest ICT developments, there is also a
new class of risks to be identified and dealt with.

After summarizing the eminent advantages of the
consequent use of COTS products and outsourcing, this
paper will address the risks that have to be considered
and finally point out methods to improve confidence in
how to use "unsecure" products and services.

Benefits of COTS Products and Outsourcing

Innovation rates in modern ICT keep decreasing at a
breathtaking pace, while at the same time new
developments continuously broaden the spectrum of
service details and technical features waiting to be

introduced into new or refined products. Integration and
diversification occur in parallel, allowing to design and
produce in large numbers products adapted or adaptable
to very specific customer requirements.

As an example, we see today mobile phones more and
more equipped with services / interfaces for services like
WAP and SMS, allowing to use a piece of hardware
originally designed to communicate via speech to send
and receive written messages and to retrieve information
from the internet. On the other hand, the spectrum of
available mobile handsets and contracts differing in
service details leads to such a fast change of products (as
a combination of hardware, software, and service)
offered by service providers to the enormously
increasing number of mobile phone users all over the
world that a market analysis may easily be outdated
within three months.

This example illustrates the ever changing variety of
often highly competitive products openly available on the
ICT market.

Competition helps in both keeping the prices low or
bringing them down and in the products constantly being
made more attractive by add-ons, by featuring the latest
technological developments, and in the case of complex
systems by add-ons like customisable services for
configuration, maintenance, update integration, migration
from or to other products / product versions.

Thus, the definition of requirements for ICT components
and even for complex ICT systems need no longer result
in lengthy design and development phases, but can be
accompanied by quick though intensive market reviews
and tests, which may be followed by quick procurement
decisions based fully or largely on commercial products
with or without lifetime maintenance.

The advantages both for end users as for system
administrators are plentiful. From the user perspective,
for example, common place graphical user interfaces
facilitate getting used to a new system or to new
applications in an existing system, since features present
in many applications are accessed more and more often
in the same form, so that the user can easily identify and
concentrate on new and unknown features to be used.

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

7-2

For the administrators, the advantages range from having
access to "frequently asked questions" and provider
hotlines and thus often well tested solutions helping with
day to day problems typical for the product over the
better availability of bug fixes for widely spread products
as compared to having little or no support for a system
that was only devised in one or very few pieces, to the
possibility of fully concentrating on user oriented
administrative tasks by outsourcing tasks like
maintenance, release changes or similar tasks so that they
no longer intermingle with the daily routines.

The benefits of outsourcing tasks and services formerly
performed within an organisation become obvious when
such tasks are only needed from time to time, when
equipment needed for these tasks is costly but only
infrequently used, when the people responsible for these
tasks need special, cost and time intensive training but
have little opportunity to use their skills etc. If these
tasks and services can be done by outside providers
without the need of being familiar with the daily routines
of the system or organisation, outsourcing may lead to a
less costly and more professional performance of
systems.

But even ICT services needed constantly are more and
more often subject to outsourcing, as e.g. wide area
communications services, customer support (hotline),
system administration.

Another example for outsourcing is the operation of
systems where, especially in a military environment, high
rates for personnel changes are opposed to a long and
extensive training required. In such a case, the continuity
of systems operation can be better achieved by constant
assignment of external specialists.

Other candidates for outsourcing are power supply, water
supply, where the label "commercial service" comes into
play with the increasing privatisation of these sectors, or
services like facility management which may include the
employment of private security services.

Paradigm shift in procurement

To profit from the described benefits of using COTS
products and commercial services, in many countries the
military has already adopted a strategy to use COTS
products wherever possible. However, the subsequent
changes needed in the procurement processes for new
systems as well as for replacing or enhancing existing
proprietary systems, sometimes even systems not yet
fully operational (and with designed lifetimes of another
five or ten years), with COTS products have not yet in all
of these countries been fully accomplished.

Another development is that military systems can no
longer be easily separated in ICT and non-ICT systems.

Electronically interconnecting systems that used to be
isolated and only dependent on people to transfer
information from one to the other, or introducing and
continuously improving "intelligence" in weapon
systems via embedded systems, electronic sensors etc.,
automating logistics, setting up automated chains of
interdependent information processes with growing
complexity as part of decision support processes
allowing, e.g., increasingly real-time situational
awareness, are just a few examples showing that
information and communications technology has become
almost omnipresent in all military systems.

And there is yet another aspect to interconnection and
interdependence: the number of systems to which
commercial services as e.g. energy supply or wide area
communications are indispensable continuously
increases, leading to inevitable dependencies of military
systems from and interconnection of military systems
with systems and services from the civil sector.

Risks by use of COTS products and commercial
services

Both the adoption of the maxim of consequent use of
COTS products where adequate products are available,
and the fact of increased interConnectivity and
interdependency within the military and between the
military and the non-military sectors lead to new classes
of risks.

These classes of risks comprise technical risks as well as
risks from organisational, procedural, even political
origins, which may, for example, originate from

• System inherent risks due to complexity and
heterogeneity of system components, including bugs,
backdoors, manipulated chips etc.

• Increasing vulnerability and attack options by
interconnecting systems with one another and with
commercial open networks (Information Warfare),

• Dependence on products not implemented under
military control, which thus have to be operated as
"black boxes"

• Dependence on suppliers of equipment and services
that operate world wide and whose performance may
be unpredictable.

• Political risks when a product is completely or partly
produced in a country that is not a friend or partner or
changed from friend to adversary

• Risks by using products or integrating products into
existing systems that do not meet all the requirements
originally formulated for a certain task

• Loss of support and continuity when the manufacturer
or a product line with "guaranteed" availability cease
to exist

7-3

The same range of problems have to be considered when
commercial services are used, be it just sporadically or as
an essential component of a military system of service.
Here, it is also crucial to recognise and take apply
appropriate measures against problems that may arise
from:

• External personnel having direct or indirect access to
military systems, e.g. via direct or remote
maintenance,

• external personnel having access to people via social
engineering techniques,

• risks introduced by sporadic unavailability of services
supposed to "always" available, and

• risks caused by attacks on normally highly reliable
services indirectly affecting systems or services
depending thereon.

Risk assessment and risk management

In dealing with these problems, the solution cannot be to
simply avoid the origins of these risks, e.g. by avoiding
the use of COTS products. They have to be accepted as
an inevitable side-effects of the need to use COTS
products and commercial services, and it has to be
acknowledged that these side-effects have to be dealt
with. We have to learn to assess and manage these risks
as a part of daily life.

To be able to deal with these risks, however, we have to
understand that all of these risks really have to be
recognised and consciously acknowledged as risks at all
organisational levels.

It is not enough to have IT security experts deal with
typical IT security risks, although achieving a high
standard of IT security by implementing and managing
well tuned and harmonised IT security measures is a
fundamental part of successful risk management.

In the October 1999 symposium, I described a threat
model and suggested possible procedures (see [1]) for a
holistic security management. In the conclusion, I said: "
Security management should be designed to effectively
assure and support operation of a system (of systems),
including all the processes it is designed for. It should be
based on a „holistic" view of all security aspects to
enhance abilities to detect and correctly assess
irregularities and to invoke adequate countermeasures."

Managing security (i.e. managing the measures to
achieve the goal) is in this context equivalent to
managing risks (i.e. dealing with the problems and
keeping them low), where the word "management"
indicates not one time actions and static solutions, but
continuous analysis of protocols, reviewing the
efficiency of technical and organisational measures and
procedures, acceptance by the users and so on.

Managing security within an organisation also should be
equivalent to enabling secure use of systems and services
made available within the organisation

For dealing with risks in connection with the use of
COTS products and commercial services, this means that
the grade of security (from unsecure to secure) of every
specific system or service - as a whole or as a
component - has to be assessed and taken into account
during the installation or integration by adequate
technical and / organisational and /or procedural
measures.

Technical aspects

The use of "secure" products, e.g. evaluated along the
Common Criteria, is only sometimes a solution, as new
releases would have to be re-evaluated and the evaluation
process is time and resource consuming, preventing that
the latest technology can be made available in a "secure"
product at (almost) the same time as the equivalent
"normal" product. Also, "secure" products are much
more expensive than their "normal" counterparts, which
may have a considerable impact on the cost effectiveness
and thus means that every day "normal" products have
no real alternative.

Technical measures to reduce risks are more and more
often based themselves on COTS products and services,
e.g. by use of firewalls, anti-virus software, intrusion
detection systems, commercial computer emergency
response services and so on, where the quality and
reliability of these products is very often mainly based on
shared positive experience with the product and, for
reasons of rapid changes to continuously adapt to new
threats, only rarely on evaluation.

However, technical measures may be weakened, if not
useless if negligence and carelessness of both users and
administrators cannot be considerably reduced. To
achieve this, a considerable rise in awareness of the
existing risks is required.

Awareness

An overarching risk assessment and subsequent risk
management can only be successfully achieved when all
parties involved in all stages of the life cycle of ICT
systems, i.e. in requiring, designing, deploying, and
finally using these systems or the information provided
by them, which means more or less everybody, are aware
of the imminent problems and willing to take
responsibility in the risk management process.

Awareness in this context means

• recognising and acknowledging the existence of a
new quality of risks created by the consequent use of
COTS products and commercial services

7-4

recognising and acknowledging that these risks have
to be dealt with in a co-operative way,

willingness to contribute to risk reduction according
to one's position and tasking

consequent use of existing security measures

encouragement of everybody else to do so as well,

attention to unusual events or obvious security
breaches,

Although these characteristics are independent of
whether the systems are pure COTS or using many or
few or no COTS components, or of whether they are
connected to other systems or to commercial networks, it
has to be understood that to cope with the risks induced
by increasingly interconnected and interdependent
COTS-based ICT systems and direct or indirect use of
commercial services, a high level of awareness not just
with the security people is a precondition for a successful
risk management that enables secure use of these
inherently "unsecure" products and services.

This high level of awareness from the simple user
through to the highest management level has to be
reached step by step, including the broader coverage of
security issues in education and training as an integral
part of learning how to use and operate a system,
supported by a variety of exercises both for crisis
management training and for evaluating whether present
technical and organisational measures are appropriate to
deal with critical events.

A prerequisite for adequate awareness is the availability
of comprehensive but easily understandable information
on risks, on security measures, on how they work, on
possible effects of omitting or ignoring security measures
and so on.

• new measures that improve early detection of events
or increase the number of successfully rejected
attacks etc.

Accepting that the use of COTS products and
commercial services will continuously increase in the
military environment, the obvious benefits have to be
levelled with not quite as obvious risks on one hand and,
on the other hand, with the possibilities available and
duties unavoidable to actively manage these risks.

References

[1] S. Jantsch: "Assessing threats and vulnerabilities",
presented at the NATO RTA/IST Symposium
"Protecting NATO Information Systems in the 21st
Century", Washington D.C., 25.-27.10.1999

Conclusion

For successful risk management, an important
prerequisite is to achieve interaction and co-operation
between people at all levels: Reports should be
encouraged

• of obvious incidents as well as of unusual behaviour
- no report should be laughed at or carelessly put
aside,

• on events someone has caused himself - helping to
reduce or solve a problem should be valued much
higher than "finding and punishing the culprit"

but also on successful events such as

• successful integration of "unsecure" products - how
to configure them, what sort of extra measures are
used,

8-1

C3I Systems acquisition and maintenance
in relation to the use of COTS products

S. Rampino
M. Fiorilli

Alenia Marconi Systems SpA
via Tiburtina Km 12,400

00131 Rome, Italy

1. Summary

The paper attempts to highlight the main pros and
cons of embedding COTS products in military C3I
Systems in the overall framework of Systems
Acquisition and Maintenance, basing on Alenia
Marconi Systems industrial experience. Significant
programs are briefly outlined in this sense, providing
the reader an opportunity to consider the issue from
the "practical" perspective.

2. Introduction

Military C3I Systems are complex, software intensive
Systems, conceived and designed to assist the users in
the analysis and solution of operational and
management problems, be it tactical or strategic.

Given the functionality required and the dynamic
environment in which such Systems are called to
operate, C3I Systems can be classified as both Real-
time Systems and Information Management Systems.

In Real-time Systems reaction times to external events
or to user actions must not only be "fast" but also
within accurately predictable limits. Information
Management Systems, on the other hand, are conceived
to facilitate the job to the user, avoiding repetitive or
trivial activities and allowing the operator to focus on
the most difficult part of the job: the decision making.

C3I Systems combine all such needs. Data coming
from electronic sensors must be collected, filtered and
fused. They must be correlated to historical or
contextual information, elaborated and synthetically
presented to the user; this, in rum, will be given
appropriate tools to generate control data and exchange
orders and messages to cope promptly and effectively
with any situation.

Due to the complexity in terms of functions, of
amount and types of data to be dealt with, of inbound
and outbound interactions with other Systems in the
context of a hostile environment, and more, a C3I
system usually is a hard test for the system engineer.

The industrial and operational context in which C3I
Systems are conceived, procured and operated is
complex as well.

The evolving organisation of modern armies, the
contemporary social/political changes, the extreme
acceleration of the technological evolution and the
increased attention to the cost-effectiveness of C3I
systems call for the introduction of new
methodologies that combined with modem Standards
allow Evolutionary System Development. In order to
provide affordable, leading-edge capabilities,
Defence Industry is seeking to take advantage of
commercial technology wherever possible but by
doing so it is changing its role and adapting its
competence.

In such a framework, this paper deals with C3I Systems
acquisition and maintenance considering AMS specific
industrial experiences and projects. A rationale is
proposed which explains why Commercial-Off-The-
Shelf (COTS) products and technology are increasingly
used in C3I Systems, together with potential benefits
and risks that need appropriate risk mitigation
strategies.

3. International Standards

The increasing availability of standards, applicable to
the overall C3I Systems engineering process, came in
handy to system designers as immediate, practical
solutions to many of their basic problems, such as the
need to accommodate operational requirements with
financial, industrial and technological constraints.

The definition and wide acceptance of standards,
pursued by Industry, Customers Associations and
Scientific Communities, ultimately allows a
systematic approach to complex problems, leveraging
from previous experiences and know-how. Most
standards, in addition, are "cook books" for
partitioning engineering problems, easing the task to
rationalise and optimise solutions.

The definition of standards in the information and
communication technologies domain is a dynamic

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

8-2

process and it involves many International Entities and
Organisations.

Standards exists today for Military and Civil
applications which embrace the whole System Life
Cycle, from design up to implementation and
production, addressing System Engineering, Software
Engineering, Quality and so on. Compliant tools and
products are readily available right after the standards
themselves.

In this framework methodologies and products that,
although missing an "official certification", are
accepted by users, makers, and designers for their large
utilisation, become "standards" as well.

"DE JURE" standards are therefore those established
and proposed by appropriate organisations and
working-groups. "DE FACTO" standards are those
systems, products and methodologies that for their
importance in terms of market weight, popularity and
potential economical advantages can not be ignored. It
is important to acknowledge the existence of both.

We can observe that, in recent years, Military and
Civil Standards tend to converge on core principles,
so establishing an important link between civil
(commercial) and military application domains (see
fig. 1).

As an example, MIL-STD499B and IEEE122 are two
important Military and Commercial guidelines that
focus their attention on the System development
process rather than on the object "System".

Both standards promote innovative concepts, such as:
• the need to adapt the "standard" process to the

single project and its specific requirements and
risks;

• the recurrent applicability of the processes at all
levels;

• the iterative use of the processes (evolutionary
Systems Management and Development);

• the combined use of traceability techniques and
system models to manage projects complexity by
linking operational requirements to system
solutions;

• the "project database" to keep memory of
choices and decisions made along the project;

• the Integrated Product Team concept, gathering
all competencies needed for the whole Life
Cycle from the project start.

The convergence of military and civil guidelines can
be explained with the commonality found in the
design of a complex system, be it for commercial or
defence application. System designers have always to
consider and exploit technologies, methods and
products available on the market or off-the-shelf,
while behaving in line with good engineering
principles:

• manage efficiently the systems development
process, using effectively all technical and
human resources;

• implement a modular, flexible, expandable,
scalable system;

• optimise functionality;
• maximise reliability, survivability and re-use.

As a result, the convergence of Military and Civil
standards is producing the first essential step towards
the use of COTS in defence systems: the availability
of top-quality COTS products and subsystems
compliant to military applications.

But more than that, such convergence opens a new
frontier as to the "re-use" or even "dual-use" of
military C3I systems, components and functionality
in the civil domain and vice versa.

4. C3I Systems "Dual-Use" and "Re-
Use"

In this framework, "dual-use" of a C3I system is meant
as the possibility to use an existing military system, as
it is, in a civil application and vice versa.

This possibility is important, as a typical example, in
emergency, unpredictable situations when the
deployment of military systems constitutes an
immediate solution to compensate the inadequacies and
deficiencies of civil protection infrastructures. Such
infrastructures, being expensive to maintain, are
reasonably sized and designed to cope with limited
catastrophes. Military C3I Systems, by definition
capable to operate in extreme environmental
conditions, provide functions directly applicable to the
civil domain such as planning, deployment and
management of staff and equipment. As an example, an
Army Corps C3I system may be used to organize civil
or mixed convoys and the set up, management and
logistics of military and civil support personnel and
infrastructures in dangerous or threatened areas. This
may solve critical situations, provided Military Systems
are interoperable with their civil counter parts
deployed.

"Re-use", on the other hand, is meant as the
possibility to build a C3I System by tailoring
components or modules of an existing system and by
integrating them with newly developed, "ad hoc" ones.
The scope of re-use, more and more a practice in
defence as well as in civil industry, includes COTS
devices and equipment but may also be applied to
architectures, tools, design and development
methodologies or even just the system developers
know-how.

8-3

Trying to consider what makes the difference between
any two C3I Systems or, as well, what makes them
similar, it is natural to note that any complex system of
this class is characterised by the following major
features:
• The requirements
• The development and design methodologies.
• The functional architecture.
• The physical architecture.
• The HW and SW technologies.
• The specific functions (so called "applications").

In relation to C3I Systems re-use and dual-use it is
important to consider the industrial and technological
standards available at all these levels, nowadays
common to military and civil domains.

Independent researches and studies, for example, on
Requirement Analysis, one of the most important
phases in C3I System design, demonstrated that any
command and control activity may be decomposed in a
logical, looped sequence of steps: data acquisition, data
processing, situation assessment, planning, plan
evaluation, plan execution and back.

As for the development and design methodologies,
Evolutionary Development is taking the place of
Waterfall Development as the most efficient and
cost-effective methodology. Evolutionary
Development is an adaptive approach to Design,
Development and Maintenance of C3I Systems. The
evolutionary life cycle has long been looked at as the
key solution to guarantee the necessary flexibility to
cope with operational, technological and economical
changes that may occur along the life of a C3I
System. This approach implies the use of proper
methodologies and tools to define and keep track of
system requirements, to develop system
specifications, to plan and manage its
implementation, integration, test and acceptance, up
to the provision of logistics support, adaptive and
corrective maintenance. It is often associated with the
use of Rapid Prototyping tools and techniques
combined with high-level 4GL languages and Object
Oriented programming paradigms on top of
commercial HW and SW development platforms.

The approach to functional architecture of a C3I
System is based upon a standard reference model, the
Open System model, which responds to requisites of
software modularity, scalability and reusability. This
model is characterised by a set of functional layers
interacting with each other and providing services
through specific interfaces. Besides being compliant to
the model, a truly "Open System" uses international
standards for such interfaces, so that application
modules may be ported and still be able to run and
operate from an "Open System" to another. Examples
of accepted standards exist for:
• User Interfaces (Motif);
• Application Program Interfaces (API);

• RDBMS queries (SQL)
• Graphic (PHIGS, GKS) and Windowing libraries

(Windows, X-Window);
• Communication Protocols (ISO/OSI stack);
• Operating Systems (POSIX)

The Evolutionary Life Cycle and the "Open-System"
architecture are common solutions both for military and
civil C3I Systems. This in turn implies the use of
common:
• design and maintenance methodologies
• architectures and functions
• man-machine interface tools

The standard physical architecture for C3I Systems is
the Client-Server one, apt to implement internet and
intranet Web architectures, with distributed HW and
SW processing (LAN/WAN connecting PCs,
workstations, peripherals, database and
communication servers) running on top of
commercial/ standard OS (Unix/Posix, WindowsNT).

Common technologies include digital transmission
devices (Ethernet, FDDI), communication protocols
and routers (X.500, X.25, TCP-IP/UDP),
multiprocessors ADP, ergonomic I/O equipment
(monitors, pointing devices, keyboards).

From the functional point of view, a number of
standard services, so called "Common User Functions",
are required both for military and civil C3I Systems:
Data Handling, Communications Handling, Event
Handling, Map Handling, System Management,
Security. The use of COTS SW is particularly indicated
in digital network control, graphical applications and
display, data management and distribution.

The application of standards to C3I military and Civil
Systems at all such levels is the bridge between the
commercial and the military worlds and favours the use
of military modules, functionality and tools in civil
systems and vice versa. In this framework, industrial
competition and shrinking budgets have been pushing
the Operational Users and the System Designer to
consider and exploit, to the maximum possible level,
technologies available on the market. Gradually but
steadily, military requirements have been revised in
this new light and partly mitigated, thus allowing the
use of commercial products, hardware and software,
as system components.

5. COTS Technologies

Full-Mil equipment, developed to address specific
military applications, has always been expensive due to

8-4

the need to develop advanced but unique and therefore
costly solutions. Furthermore, the development cycle
time needed for dedicated military equipment often
results in technologies being virtually out of date by the
time the equipment enters into service.

Suppliers of systems designed to address commercial
markets are able to spread their development costs over
a higher number of customers and the availability of the
product off the shelf drastically shortens the system
lead time.

The use of HW and SW commercial components in
military Systems appears therefore the easy way to
fulfil requirements with reduced budgets. NATO
recommendations, along this line, are indeed to:
• use international standards for which commercial

implementations exist
• use common specifications for non-standard

system components
• promote co-operation for development of non-

standard system components

But, even though the technical differences between a
COTS product and a MILSPEC compliant one are
reduced by the dominant role of standards, many
issues remains to be looked at.

Major military requirements impacting COTS HW
performance are related to:
• electromagnetic emission control
• "hostile" environmental conditions
• security
• mobility/transportability

The use of commercially available software is even
more complex and it bears all the technical implications
of software re-use. Examples of major pre-requisites
for software modules to be re-usable are:
• portability: software code has to be independent

from the operating system and from the hardware
configuration;

• interoperability: the interfaces between the
software modules and between software and users
(MMI interfaces) must be clearly defined and
univocally used;

• flexibility: software modules have to work in
different operative conditions mamtaining their
performances.

But apart from such technical difficulties, Alenia
Marconi Systems experience indicates that a number
of factors deriving from the use of HW and SW
COTS products in military applications do increase
project risks, the major ones being:

• The difficulty to evaluate the product. Evaluating
a commercial product is difficult even if it is
"standard" and "certified" in terms of quality.
Detailed documentation of the product is rarely
available before the purchase; sometimes

product characteristics and performances are
poorly documented, not documented or even
unknown. Only the effective installation and use
of the product may allow an expert system
engineer to deeply "understand" the product and
its compliance to the requirements. Difficulties
may arise not only as a consequence of
immaturity of released products but also as a
consequence of unpredictable performance in
stressful environmental conditions. Evaluation is
particularly difficult in terms of Security,
Interoperability, Robustness, RAMT and
Supportability.

• The difficulty to keep the product under control.
A commercial product is a "black box" and can
not be tailored to the military application. For
example, source code of COTS SW modules is
never available. But while it is impossible for the
systems integrator to modify a COTS product
basic functions and structure, market forces may
impose frequent release of upgraded versions of
the product or of its components. The rapid
response of commercial industry to technological
developments may also mean the abrupt
discontinuation of products. IT market has a
rapid rate of turnover in terms of products (a new
generation of equipment, typically, appears
every 3 years) and suppliers/makers (small and
big companies often grow and go bankrupt). This
dynamic world is in contrast with the traditional
C3I military Systems life cycle (10 or 20 years)
and may have negative consequences in terms of
logistic and maintenance costs. Even small
changes may impact on the whole System
Design with major and unpredictable economical
consequences.

• The difficulty to support the product. Technical
support provided by the vendor is mostly
oriented to the average user. When high
technical competence is needed, this may not be
readily available. In case the production is
discontinued, supportability may not be
guaranteed.

• The difficulty to procure the product. Product
availability-time can not be really controlled.
Once the order is placed the delivery time is
hardly guaranteed. Even when the product is
delivered, its configuration may not be compliant
with the order and the time to fix the supply is
sometimes unpredictable.

• The "Secret Costs". The price of a COTS product,
providing plenty of maybe unnecessary functions,
must not be compared with the cost to develop it
from scratch but rather with the cost of developing
a module that fulfils the minimum, case specific
system requirements, to avoid shooting
unnecessarily over the target. Price versus Cost

8-5

comparison must include guarantees, assistance,
maintenance, run-time licenses, upgrading
agreements and property rights. Making an
accurate estimation of the cost for periodical HW
and SW upgrading is difficult. Considering that the
price of computing power is continuously
dropping and that SW portability costs for an
"Open Systems" should not exceed 40% of its
acquisition costs, a periodicity of 5 years for
system upgrades may be the right balance between
costs and state of art performances. A higher
upgrading rate may be not convenient in terms of
LCC (including logistic support, configuration
control and so on).

How to maximise the benefits and minimise the
problems associated with COTS based C3I Systems
is a critical issue that requires a great deal of
engineering analysis and trade-offs along the whole
System Life Cycle. The use of commercial
components requires a specific and systematic
approach to avoid technical and project management
problems. System integration of COTS products
requires new strategies for negotiation of property
rights, estimation of system development and
maintenance costs, project planning, risk management.
It also requires building sufficient flexibility into
procurement contracts. Last but not least, personnel
must be trained and proper skills must be developed
within the Project Development Team.

6. AMS Spa Land Systems Division
Experience

The Land Systems Division (LSD) of Alenia Marconi
Systems Spa (AMS) offers services and expertise at
all levels and for all phases of C3I systems life cycle,
including complex systems design, manufacture,
integration and support. This capability matured out
of more than 30 years of experience in Battlefield and
Air Defence C2 Systems.

LSD policy for C3I Systems acquisition,
development and maintenance has long been based
on the adoption of the above mentioned international
standards and COTS elements have been increasingly
used at all levels. In relation to this, two significant
recent industrial experiences of AMS LSD are briefly
outlined in the following.

CATRJN is the acronym used for a Battlefield
Communications and Information System adopted by
the Italian Army. The implementation of this tactical
system, conceived to provide integrated and
automated support up to Corps/Division level, started
in the early 90's. The final live evaluation of
CATRTN on the field has just been completed and the
system is operational. It provides equipment and

means in areas where effective co-ordination
amongst ground and air friendly forces is required to
optimise the employment of sensors, weapons and
units, particularly avoiding mutual interference
between deployed forces that may lead, in the worst
case, to fratricidal casualties.

CATRTN is made of three main subsystems:
• SOTRTN, an integrated telecommunications

network and related management functions
providing communication services to SORAO
and SOATCC subsystems;

• SORAO, providing automated support to
battlefield surveillance, target acquisition and
correlation, aggregation and distribution of
intelligence data.

• SOATCC is the core tactical Air Surveillance,
Air Defence Artillery and Army Aviation
command and control subsystem

CATRTN was developed through a classic waterfall
life cycle based on international and NATO standards
available at system design time, such as DOD 2167/A
for software development and ISO 7498 for
communication protocols.

SORAO and SOATCC, the core CATRTN C2
subsystems, are entirely under the AMS Design
Authority. An Open System compliant architecture
has been adopted for their design to achieve
modularity, flexibility and interoperability with other
National and NATO C2 systems. All information is
exchanged using NATO standard messages (e.g.
Linkl6 J series and Adat-P3, respectively for "bit
oriented" and "character-oriented" messages) through
ISO/OSI communication protocols. Commercial
protocols have been integrated in the architecture
(e.g. X-25 for the WAN; TCP/IP for the LAN) but
the selected profile for the higher level of the stack is
STAMINA, a military version of the X.400
Electronic Mail civil standard with additional
services specifically designed for military message
handling. ORBATs have been implemented using a
COTS RDBMS (ORACLE) but a Geographical
Information System has been developed. Application
software packages, coded in ADA, have been
designed to achieve a high level of modularity and
flexibility. Military operators are able, through user
friendly interfaces, even to perform dynamic system
reconfiguration LAW the role of the specific Army
Corps echelon. The use of such standards and of
COTS ADP equipment allows the possible re-use of
the CATRTN Command and Control Centres also for
civil and/or paramilitary intelligence applications.

CATRTN has, overall, a modular and flexible
architecture and it has a high potential for dual-use
and re-use. The latest AMS C3I systems, such as
C2M, for which the use of standards and COTS

8-6

elements has been even more pervasive, enhanced
such potential.

C2M is a mobile tactical Command and Control
Centre developed for the Italian Air Force (IAF) and
devoted to support Air Surveillance, Command and
Control functions. The system has the capability to be
connected to strategic and tactical networks through
standard digital and analogue interfaces.

C2M is made of two modules:
• the CCTA Module for Surveillance & Tactical

Control
• the CCOA Module for Operational Control &

Tactical Command

CCTA and CCOA are housed in shelters containing
work stations, computers, control and management
facilities for voice and data communications, radios
and crypto equipment.

Surveillance functions supported include:
Surveillance (MRT included)
Threat Evaluation & Weapon
Assignment/Allocation
Offensive, Defensive and Support Missions
Control
Centralised/De-Centralised SAM control (Hawk,
Patriot)
Italian Air Force radar integration (RAT-31S,
RAT-31SL, FPS-117, HR-3000, ATCR-33);
NATO tactical Links handling (Link-1, Link-11,
Link- lib and Link-16);
RASP generation
UHF, VHF and HF radios handling.

Operational Control and Tactical Command functions
supported include:

Air Space Management
Planning and management of defensive and
offensive air operations
Air tasking
C2 Resources Management (control, allocation
and deployment)
Command Post Exercise (CPX);
Full data exchange recording / reduction;
Handling of Messages coming from LINK1,
LINK11B, e-mail and a number of external
systems (ACCAM, ICC, AOIS, STARGATE
WAN connections)

C2M is integrated with the ACCAM and AOIS
national networks and it is interoperable with
NADGE (through Linkl). As for COTS, C2M is
based on client-server ADP architecture implemented
with rugged HW COTS elements. Other standards
and COTS components used along the development
are:
• SW life cycle ISO-9001 standard.
• Designer 2000 / Erwin;

• ORACLE RDBMS;
• Network protocols (TCP/IP, SMTP, HTTP),

information exchange (e-mail) and tools
(Netscape);

• 10/100 Base-F Ethernet LAN;
• Sun Solaris OS;
• Unix/Windows NT portability;

The implementation of C2M is remarkable in that it
has been achieved through integration of COTS
elements and of the following heterogeneous
components:
• an existing mobile C2 system, modified to

implement the CCTA Module
• the newly designed CCOA Module and the

"CARONTE" SW subsystem, specifically
developed by AMS for the programme

• the ICC (Interim CAOC Capability) Software
Module released by the NATO C3 Agency

• the GFE STARGATE Software subsystem (the
prototyped version of which, developed by IAF,
is being industrialised by AMS through reverse
engineering activities and delivered back to IAF
as a "product")

New Projects, such as ACCS, follow these trends,
trying to use more and more COTS hardware
platforms, to integrate COTS software with MILSPEC
one, to adopt innovative methodologies (e.g. Integrated
Product Teams) and to refer to world wide accepted
standards for the whole System Life Cycle.

7. Conclusions

The use of international Standards is the way to achieve
C3I Systems scalability, modularity, flexibility and
interoperability, allowing such Systems to operate with
other national and international C3I Systems, in
different and stressful operative conditions and for
different applications.

Since C3I Military and Civil Systems have been
designed following common standards, the use of
COTS components has been increasing and dual-use
and re-use potentials have been enhanced.

Use of COTS information technology in military
systems offers reduced development and support costs,
improved interoperability, reduced technological risk,
accelerated deployment, and support the evolutionary
development concept.

In addition, the continuing trend to use and establish
updated technical Standards is pushing modem C3I
Systems to be based on COTS products but these are
effectively "black boxes" and raise risks and concerns
that must be handled properly.

8-7

Major Defence Industries, such as AMS, are adding to
their system development and manufacturing
capabilities of MILSPEC oriented Systems, the skills
needed to offer COTS oriented, system of systems
integration. This involves evaluation of technologies
and products available on the market, together with
innovative system design and engineering
methodologies. Technical and commercial
knowledge is required to determine when a system or
a system component is a good candidate for
migration toward a COTS approach.

Defense Weapon
Systems

DOT) Directive 5000

MIL-STD-
499A

Engineering

MIL-STD-
499B

Systems
Engineering

MIL-STD-
490A

Specific.

MIL-STD-
483A

Confie. Mamt

MIL-STD-973
Config. Mgmt

MIL-STD-
1521A

Reviews &

MIL-STD-498
Software Dev.

&
Documentation

MIL-Q-9858A
Quality Prgm

MIL-STD-2168
Software Quality

Pram

Defense Information
Systems

POD Directive 7935

MIL-STD-
7935A

Software Dev.

Commercial
Standards

EIA IS 632
Systems
Enein.

IEEE 1220
Application
and Mgmt of
the systems
Engineering

Process

IEEE/EIA
1498

Software Dev.

ISO 12207
Information

Tech.
Software Life

Cycle
Processes

ANSI/ANQC Q91-
1987

Quality iy>tfin< -

ISO 9000
Quality systems

Fig. 1 Military and Commercial Standard

9-1

COTS Software Evaluation Techniques

John C. Dean, CD, B.Sc, M.Math
National Research Council Canada

Software Engineering Group
Building M-50, Montreal Road

Ottawa, Canada Kl A 0R6
+1 613 991 6975

John.Dean(2)nrc.ca

Dr. MarkR. Vigder, PhD
National Research Council Canada

Software Engineering Group
Building M-50, Montreal Road

Ottawa, Canada K1A 0R6
+1 613 991 6972

Mark.Vigder@nrc.ca

ABSTRACT
Employing Commercial Off-the-Shelf (COTS) software
products as components in large-scale long-lived systems
has been proposed as a way to reduce both implementation
and operating cost for the user communities. While this
may be the case, the actual benefits have not been
confirmed. However, there is factual evidence that some of
the suggested cost savings will be offset by the need to
address a new set of issues that are raised by the inclusion
of COTS components. One of these is the need to evaluate
candidates COTS systems early in the development life
cycle. Our research is concentrated in the area of physical
evaluation of candidate products, that is, actual testing of
the products themselves.

The purpose of this paper is to present a discussion of
proposed evaluation techniques used to select COTS
software components for systems development, to describe
appropriate testing techniques for COTS candidates, and to
propose an evaluation system which will provide support to
ensure timely selection of suitable COTS products.

Keywords
Commercial Off-The-Shelf, COTS, software, evaluation

1 INTRODUCTION
In modern COTS-based systems development we need to
evaluate the candidate COTS components at an extremely
early stage in the development process. At this stage
requirements are generally less than completely defined
and often provide only the most general guidance to the
evaluator. As with any modern system, the requirements
evolve over time. The fundamental difference in a COTS
based system is that COTS capabilities have been shown to
influence requirements13'4'10' decisions and thus the
evaluation process is inextricably linked to requirements
definition.

Some of the proposed COTS evaluation methods have
proven to be less than successful because they are based on
traditional development paradigms which, while applicable
to systems built from first principles, have not been able to
easily accommodate COTS software components. Many of
these paradigms rely on a highly structured requirements

definition and specification that sets the criteria for COTS
selection. As such they are slow to react to the fast
changing commercial marketplace

Other proposed evaluation processes depend on the pre-
qualification of COTS components. With these schemes the
developer selects from lists of qualified or certified
components which have undergone extensive generic
laboratory testing. These components are then incorporated
into the current development. The developer must rely on
in-context evaluation to ascertain specific knowledge about
each candidate COTS software product.

An alternative methodology is one in which the COTS
software selection and evaluation influences and is
conducted concurrently with the requirement definition
process. This approach has advantages in terms of cost and
time because it results in a more directed evaluation of
components and because it reduces implementation
complexity.

2 EVALUATION OF COTS PRODUCTS
Oberndorf et al1151 provide a general background discussion
of the issues involved in selecting and evaluating COTS
products. In particular, they stress that in-context
evaluation is necessary for any reasonable hope of
successful evaluation. In context evaluation implies that
evaluations are conducted within the scope of the systems
to be conducted as opposed to out-of-context evaluation
that is conducted against a set of generic criteria.

Current literature provides a number of methods for the
evaluation of COTS components. Each of these methods
emphasizes one or more critical aspects of COTS software
evaluation. This section will discuss highlights of these
proposed techniques. This is not meant to be a
recommendation as to the validity of these methods, but
only an overview. The overriding goal is to identify those
aspects of the methodologies that might be useful in
developing an integrated approach to evaluation. The
information is drawn from a broad range of fields, some of
which have different goals than COTS-based systems
development, but the information is still pertinent.

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

9-2

2.1. COTS-based Integrated System Development
(CISD) method
Tran and Liu [16' propose, within the CISD model, a two
stage COTS selection process. The first stage is product
identification, where candidates are identified and
classified. The data for this stage is gathered via vendor
documentation, personal experience or other means. The
results are a list of potential candidates. The second is
evaluation, where the final candidates are chosen (and
unsuitable candidates eliminated). In this stage the authors
depend on concrete techniques. They state that the COTS
evaluation phase requires the extensive use of prototyping
techniques. They argue that prototyping is the only way to
practically evaluate a COTS candidate within the systems
context. They define three critical stages of the evaluation
phase; functionality, interoperability, and performance. In
the functionality phase the candidates are tested in isolation
to confirm that the functionality of the COTS product is
applicable to the current application. In the interoperability
stage, the candidates are evaluated to ensure their ability to
co-exist with other components of the system, both COTS-
based and custom developed. The performance evaluation
stage consists of a quantitative analysis of the effect of the
COTS component on the overall performance of the
system.

The final aspect of the methodology is a management
evaluation that considers the less tangible aspects of
integrating the COTS product. These include such things as
training, cost, vendor capability, etc. At the end of this
process a final selection of COTS products is made.

The authors also discuss different approaches to evaluation
based on constraints such as development time and cost.
Two that they highlight are the Comprehensive Evaluation
(CE) approach and the First-Fit Evaluation (FE) approach.
The result of CE is a list of the most optimal COTS product
sets while the result of FE is the first product set which
fulfills the requirements. They state that FE is the more
cost-effective approach.

Note that this methodology depends on having a relatively
complete predefined set of requirements since the product
identification stage is dependent on COTS candidates
meeting the requirements. The methodology in general is a
waterfall-style process in that each stage depends on the
results of its predecessor.

2.2. Off-The-Shelf-Option (OTSO)
Kontio et al.[8'91, present a multi-phase approach to COTS
selection which begins during requirements solicitation.
With their approach the decision to incorporate COTS into
the system has been predetermined and thus the OTSO
method is only concerned with the actual selection process,
not with implementation. The phases are the search phase,
the screening and evaluation phase and the analysis phase.
In the search phase COTS candidates are identified. At this
time the requirements are not fully specified and, in fact,

may be quite vague. The screening and evaluation phase
narrows the field of potential candidates.

During both these phases the extension of understanding of
the product capabilities provides feedback to the
requirements definition process. This results in a
refinement or modification of known requirements as well
as the introduction of new requirements. Evaluations are
always performed against a set of evaluation criteria which
are established from a number of sources, including the
requirements specification, the high level design
specification, the project plan, etc.

The final phase of the selection process is the analysis of
the results of the evaluation. This leads to the final
selection if COTS products for inclusion in the system.

The central theme to the OTSO method is the construction
of a "product evaluation criteria hierarchy". This hierarchy
serves as a template for situation specific criteria definition.

The conclusions that the authors reach are that criteria
definition must be revisited for each project because each
project evolves in a different environment at different
times. This again implies that evaluation is context-
dependent. The OTSO process is iterative because the
requirements are both refined and defined throughout the
course of the evaluation stage.

2.3. Checklist Driven Software Evaluation Methodology
(CDSEM)
Jeanrenaud and Romanazzi16' present a methodology for
evaluating software that employs checklists, which they use
to determine a quality metric for each item in the checklist.
The process is metric based and provides a numerical result
that describes the suitability of the component. This
approach is very attractive because it quantifies the
evaluation results, however the authors base some of their
discussion on the availability of source code and access to
individual modules, neither of which are usually available
in a COTS product. They also depend heavily on the
vendor documentation and demonstrations for supporting
data as opposed to in-context, practical evaluation. This
may lead to the adoption of unsuitable candidates.

Mcdougall and Squires'13' present arguments why this
approach is not necessarily effective as a selection process.

2.4. Procurement-Oriented Requirements Engineering
(PORE)
Maiden and Ncube'10"1 propose a template approach to
requirements definition that depends on evaluating COTS
products. They initially suggest requirements need to be
reasonably defined in order to be able to start evaluating
COTS products. The process they describe, however, is one
in which requirements are defined in parallel with COTS
component evaluation and selection.

Within their discussion of lessons learned they highlight
that software prototypes are useful in developing

9-3

knowledge concerning COTS products and their
interactions within the overall system. They stress that the
selection process needs to proactively evaluate the actual
product and not rely exclusively on the vendor-supplied
documentation or demonstration.

Although they are directed towards requirements
acquisition, the sample templates give a preliminary view
of some of the steps needed to perform a justifiable
evaluation of candidate COTS applications.

3 TESTING TECHNIQUES FOR COTS
EVALUATION

Evaluation of candidate products requires that we adopt
some technique to prove the capabilities that interest us. In
traditional software development there are two accepted
methods of testing software products. They are white box
and black box testing. It is not clear that both of these
techniques can be applied effectively in the case of COTS
software-based systems since both the available
documentation and the goals of COTS evaluation are
different.

With COTS-based systems there are a number of unique
constraints on our ability to conduct effective testing. In
general we assume that we have no access to the source
code or, in the case where it is available it cannot be
modified. This means that we cannot internally instrument
the executable. Most vendor documentation that is
available consists of user manuals and advertising materials
and is not directed at evaluating the operation of the
system. For example, it does not describe the behaviour of
the system in response to abnormal input. Finally, in
COTS-intensive systems much of our use of these products
is under non-standard conditions so the testing focus must
be skewed towards unique situations.

These constraints influence the goals we are attempting to
accomplish with COTS evaluation. Much of our test
strategy is directed towards discovery of behaviour under
system imposed conditions. We also need to confirm that
the product adheres to specifications supplied by the vendor
and that it can operate within the system environment,
particularly as this pertains to product interoperability. We
want to determine if we are able to mask out unwanted
functionality as well.

3.1. White Box Testing
White box testing relies on the ability of the tester to
examine the internal operations of the software at the
source code level. One of the accepted white box testing
methods is basis-path testing where an attempt is made to
exercise each independent path through a code module.
There are a number of interesting ways of determining the
independent paths. This type of testing is usually
undertaken during actual software development while code
is being actively constructed. This corresponds well to the

concept of verification testing which confirms that
functionality of a system is implemented correctly

3.2. Black Box Testing
Black box testing is designed to allow the tester to treat
each code module as a unit which can be defined by its'
inputs and outputs (the interfaces to the module) without
regard to the route by which an input is transformed into a
particular output. With this method visibility into the
internal workings of the code module is not necessary and
thus the source code is not required. An example of the
methods used during black box testing is boundary value
analysis where inputs are supplied to the module under test
which represent valid, invalid and boundary values. The
outputs are then measured and accepted if they fall in the
expected output range. The black box type of testing is
normally carried out during system integration or after the
completion of the coding of a module. This type of testing
also is seen during acceptance testing and is considered to
be the foundation of validation testing which confirms that
the software actually performs the required functions.

The physical testing of COTS candidates is necessarily
constrained by the fact that the source code is not available.
Some of the testing is for discovery of undocumented
features and/or bugs while other testing involves
confirming or denying the published vendor data and
specifications. Both of these can be seen to be a special
case of validation; the first because we are trying to
increase our understanding of the candidate under
evaluation, and the second to attempt to confirm the
vendors claims as to the effectiveness of the COTS product.
The various black box techniques seem to be ideal for these
purposes since we do not have the visibility into the system
that white box testing requires.

Test Methods
One of the recommended methods for evaluating COTS
products is to employ scenario-based testing methods.
With this method a portfolio of scenarios is created. Note
that the scenarios represent typical operating procedures for
the system that is to be constructed, not for the COTS
product under test. Test procedures are developed based on
the scenarios and each candidate is evaluated against the
criteria. In this case the initial scenarios are reasonably
easily established using the preliminary operational
requirements definitions. The results of this type of testing
will be confirmation that the qualified candidates perform
appropriately in the system context.

Another method that has been suggested by Voas1'7' is the
use of fault injection techniques. This is particularly
effective when access to the internal operations of a
product is restricted. The method consists of inserting
erroneous values into the data and/or control stream and
observing the results. This technique is a good example of
evaluating for discovery, that is, to determine unknown or
unexpected reactions of the product under evaluation.

9-4

4 A PROACTIVE EVALUATION TECHNIQUE
The technique that we have developed during the
implementation of our prototype relies neither on a strict
requirements definition nor on pre-qualification of COTS
products. Rather, it combines the most effective processes
of all of the above models.

4.1. The Concept
We begin with a generalized statement of requirements in
which we describe only the overall concept of the system to
be developed. This initial requirements definition draws
much from the operational needs of the users and less from
the technical descriptions. We take this approach because
we do not, at this early stage, want to eliminate any
possible solution to the problem. This allows great
flexibility in selection of appropriate COTS software. Only
during the detailed evaluation stage do we establish more
restrictive technical criteria. Using our prototype system as
an example, only after surveying the marketplace for
appropriate tools to transfer data, did we select the
hypertext transport protocol as the primary transport
mechanism.

The next step after gathering initial requirements is to
survey the marketplace to determine which candidate
COTS components exist that exhibit capabilities
compatible with the generalized requirements. We are not
attempting to find all the available candidates but only a
reasonable selection. Choosing the initial candidates based
on generic capabilities somewhat eliminates the
competitive aspects of the survey. Should we find a
candidate that appears to be an ideal fit we could select that
component without further comparison. Our experience has
been that we can find one specific component in about
ninety percent of the cases without requiring a pre-
qualification stage. During the market survey we continue
to redefine the requirements based on the knowledge we
gain about available products. The information may lead to
the addition of or possibly to the removal of requirements.

After choosing the candidates, we analyze existing
documentation to determine what advertised capabilities
exist that we might require within our proposed system. At
this stage we would assume that any of the candidates
under consideration could perform adequately in the role.
The COTS component is tested to ensure that it indeed
performs within its documented parameters. Exceptions are
noted but these exceptions do not necessarily eliminate the
component. That would occur only if an exception would
cause significant harm within our usage context. We do not
attempt to assess the undocumented features of a
component. This preliminary evaluation is only to
determine that the documentation is accurate and that the
candidates actually perform as documented.

We then begin a more detailed evaluation of the component
by creating a system based test harness and exercising the
component within the context of our application. Maiden'10'

argues the case for a scenario based testing process as a
reasonable and effective testing mechanism. Likely
operational scenarios are determined and documented and
the candidate is then subjected to operation under the
established scenario

Much of this evaluation is conducted using prototype
implementation. The actual test suites that are applied to
the components are derived from the requirements. Test
suites are designed to examine the limits of the product
under test. The prototypes are made successively more
capable until we are confident that all of the needed
functionality of the COTS component has been examined.
This evaluation is meant to establish the operating bounds
of the component and to enable us to begin to refine our
requirements to fall in line with the capabilities of the
candidate. We also attempt to determine ways to mask out
currently unneeded capabilities.

Finally we define any local enhancements which may be
needed to supplement the capabilities of the component.
The enhancements are necessary to provide for critical
requirements that cannot be implemented using COTS
components. These will be implemented in the wrappers
and/or the glue code of the system. If a critical requirement
is such that an entire subsystem needs to be implemented
in-house, that subsystem will be designed and coded so that
it can be integrated as a COTS product.

Advantages
The advantages to this approach are significant, particularly
in the early stages of development. By restricting the
evaluation and testing to the specific needs of the current
system we eliminate the direct pre-qualification
requirements completely. This allows us to concentrate our
efforts on deriving a limited set of tests that exercise only
the interesting capabilities of the candidate.

In-context testing ensures that the candidate is suitable for
this particular project. The testing is extremely focussed
and definitely goal-directed. The actual test cases are
designed to exercise only those aspects of the COTS
component that will be used for this application. The
testing relies heavily on a Black Box approach since the
internal operation of the component is usually unknown.
Even if we do have access to source code, the goal is to use
the COTS software without modification and therefore we
must assume that White-Box techniques will not provide
useful information. An expanded form of Boundary Value
Analysis can supply all the information that we require.
This is not to suggest that the testing process is somehow
incomplete. We follow the same rigorous approach that we
would when planning and implementing testing for a
traditional development model but here we emphasize the
integration aspects of testing.

We evaluate only existing, current versions, because our
evaluation takes place closer to implementation. This

9-5

ensures that we do not have to repeat the evaluation prior to
implementation. We also only evaluate those components
that we realistically believe can be used in our system. We
select a subset of available components for evaluation by a
process of examining candidates only until we feel we have
a representative selection. If one candidate appears to be
ideal (i.e. it is capable of filling the majority (the 80-20
rule) of the requirements) we do not seek other alternate
solutions unless there is some constraint applied. This
reduces the number of components that must be evaluated.
It also leads to a truly independent assessment of the
candidate's capabilities because it reduces the competitive
and/or comparative nature of the pre-qualification process.

A further advantage is that we can use the acquired
product understanding in future projects to aid in selecting
appropriate candidates. We construct our understanding via
evolution rather than monolithically. We also gain an
understanding of the critical aspects of a candidate COTS
product.

Finally this approach fits requirements to COTS
capabilities. This leads to a more comprehensive match
between the COTS components and the final system
requirements. This is not to say that only the capabilities
exhibited by the COTS components will appear in the final
product; rather, it forces the system integrator to consider
carefully whether a particular stated requirement is actually
necessary or whether it can be eliminated. Those
requirements outside the capability sphere of the candidate
COTS products, but deemed necessary, will be met by
constructing a component in-house. Implementation of
these in-house components follows traditional development
processes, except that the component is then integrated into
the system in a similar manner to a COTS product. This
ensures architecturally consistency throughout the system.

5 CONCLUSIONS
This paper outlines a number of proposed evaluation and
selection techniques for choosing appropriate COTS
software products for incorporation in large-scale systems.
The advantages and disadvantages of each are outlined. We
have then proposed a process for the evaluation of COTS
software products that takes advantage of the best processes
of the different methods as well as introducing new
techniques.

Current testing practices as applied to conventional
development were examined and their applicability to
COTS development highlighted. It is obvious that Black
Box techniques are mandatory during in-context evaluation
of software but also that the goals of testing are somewhat
different from the traditional ones. Scenario based testing
provides a good basis for evaluating candidate products.
The results obtained from evaluation testing can be used as
validation data for system testing.

6 ACKNOWLEDGEMENTS
The research described by this paper has been jointly
supported by the Defence Research and Development
Branch of the Department of National Defence Canada and
the National Research Council Canada.

7 REFERENCES
1. Evan E. Anderson, A Heuristic for Software Evaluation

and Selection. Software Practice and Experience,
I9(8):707-717, 1989.

2. Jean Bergeron et. al.. Detection of Malicious Code in
COTS Software. A Short Survey. In International
Software Assurance Certification Conference,
ISACC'991998.

3 . John C. Dean and Mark R. Vigder. System
Implementation Using Off-the-shelf Software. In 9th
Annual Software Technology Conference 1997.

4. G. Fox and S. Marcom. A Software Development
Process for COTS-based Information System
Infrastructure. In Fifth International Symposium on
Assessment of Software Tools and Technologies,
pp 133-142, Jun 1997.

5. David Garlan and Robert Allen and John Ockerbloom.
Architectural Mismatch or Why it's hard to build
systems out of existing parts. In 17th International
Conference on Software Engineering, pp 179-185,
1995.

6. J. Jeanrenaud and P. Romanazzi. Software Product
Evaluation: A Methodological Approach. In Software
Quality Management ILBuilding Software into
Quality, pp59-69, 1994.

7. I.M. Klopping and C.F. Bolgiano. Effective evaluation
of off-the-shelf microcomputer software. Office
Systems Research Journal, 9(l):46-50, 1994.

8. Jyrki Kontio. A Case Study in Applying a Systematic
Method for COTS Selection. In 18th International
Conference on Software Engineering, pp201-209,
1996.

9. Jyrki Kontio and Gianluigi Caldiera and Victor R.
Basili. Defining Factors, Goals and Criteria for
Reusable Component Evaluation. In Proceedings of
CASCON '96, pp 17-28, Nov 1996.

10. Neil A.M. Maiden and Cornelius Ncube and Andrew
Moore. Lessons learned during the requirements
acquisition for COTS systems. Communications of the
ACM, 40(12):21-25, Dec 1997.

11. Neil A. Maiden and Cornelius Ncube. Acquiring
COTS Software Selection Requirements. IEEE
Software, 15(2):46-56, Mar 1998.

12. Jean Mayrand and Francois Coallier. System
Acquisition Based on Software Product Assessment. In

9-6

18th International Conference
Engineering, pp210-219, 1996.

on Software

13. Anne McDougall and David Squires. A Critical
Examination of the Checklist Approach in Software
selection. Journal of Educational Computing Research,
Vol 12(3):263-274, 1995

14. National Research Council COTS Web Site Available
at:
http://wwwsel.iit.nrc.ca/proiects/COTS/COTSpg.html

15. Patricia Oberndorf and Lisa Brownsword and Ed
Morris and Carol Sledge. Workshop on COTS-Based

Systems. SEI Special Report CMU/SEI-97-SR-019.
1997.

16. Vu Tran and Dar-Biau Liu. A Risk-Mitigating Model
for the Development of Reliable and Maintainable
Large-Scale Commercial-Off-The-Shelf Integrated
Software Systems. In Proceedings of the 1997 Annual
Reliability and Maintainability Symposium, pp361-67,
Jan 1997.

17. Jeffrey Voas. Error Propagation Analysis For COTS
Systems. Computing and Control Engineering Journal,
8(6):269-72, Dec 1997.

10-1

Reliable Tailored-COTS via Independent Verification and Validation

Michael A. Beims
AverStar, Inc.

100 University Drive
Fairmont, WV, USA 26554-8818
mbeims@mail-fair.ivv.nasa.gov

James B. Dabney
AverStar, Inc.

1100 Hercules, Suite 300
Houston, TX, USA 77058

jim@averstar.com

Abstract

An important class of Commercial Off-The-Shelf
(COTS) applications is the adaptation of an established
COTS product to an operational environment for which
it was not originally intended. This tailoring of the
established product can provide the expected cost-
reduction benefits associated with COTS and still meet
system reliability requirements when augmented with an
appropriate Independent Verification and Validation
(IV&V) activity. We illustrate the tailored-COTS IV&V
approach using the integration of a COTS Global
Positioning System (GPS) receiver into the Space
Shuttle onboard avionics system. The COTS GPS
receiver chosen is a proven, reliable navigation aid that
has been successfully integrated in numerous military
aircraft, ranging from helicopters to jet fighters.
However, integration of this COTS receiver into the
Space Shuttle avionics system required many changes
due to the different avionics hardware environment and
the dramatically different flight environment. The key
elements of the tailored-COTS IV&V approach are
identification of unchanged but operationally affected
code, development of automated code analysis tools,
software scenario analysis, and exploitation of historical
databases.

1 Introduction

Tailored-COTS is an important class of COTS
applications in which proven off-the-shelf equipment is
adapted to environments for which it was not originally
intended. Tailored-COTS can be quite attractive
economically, but it presents special challenges to
Independent Verification and Validation (IV&V). The
integration of the COTS GPS receiver into the Space
Shuttle avionics system illustrates typical problems that
must be overcome in a tailored-COTS program. The
selected GPS receiver is a proven off-the-shelf product
that has been successfully integrated into the avionics
systems of numerous military aircraft. Changes required
for integrating this COTS GPS receiver into the Space
Shuttle avionics system include a new interface where a
Space Shuttle-specific serial input/output (I/O) card
replaced the Mil-Standard 1553 bus Serial I/O interface.
Also, the orbital flight environment required significant
changes to navigation and satellite vehicle acquisition
and tracking algorithms designed for relatively

(compared to the Space Shuttle) low speed and low
altitude atmospheric flight.

As a result of these significant changes and the high
criticality of the Shuttle navigation system, NASA's
Independent Verification and Validation facility was
tasked to perform IV&V on the Shuttle's modified
COTS GPS receiver, specifically the embedded software
in the receiver. This IV&V effort required the
development of a new tailored-COTS IV&V process that
has been very successful. This new IV&V process was
based on IV&V techniques employed successfully on
traditional mission-critical software development
projects. The tailored-COTS environment presents
significant new issues in resource allocation and
verification and validation techniques.

The paper briefly describes the hardware and
environmental differences between the COTS GPS
receiver's environment and the Shuttle, and explains the
unique issues posed by IV&V of tailored-COTS
products. This paper also identifies several IV&V
techniques that were successfully used during IV&V of
the modified COTS GPS receiver's embedded software.
Finally, it presents conclusions and suggests future
improvements to the process.

2 Background

The Space Shuttle is a unique aerospace vehicle in that it
must operate as a rocket (during launch and ascent), as a
satellite (during orbit), and as an aircraft (during entry
and landing). These distinctly different flight regimes
each present different navigation problems. The current
Shuttle navigation system uses star tracker and ground
radar for on-orbit navigation and tactical air navigation
(TACAN) and microwave scanning beam landing
system (MSBLS) during entry and landing. TACAN is a
ground-based military enroute navigation system that is
being replaced by GPS on all United States military
aircraft. Therefore, within a few years, it will be
necessary for NASA to replace the Shuttle TACAN
system with GPS or to maintain the TACAN ground
stations at NASA expense.

The selected COTS GPS receiver was designed and
tested for use in military aircraft ranging from
helicopters to supersonic jet fighter aircraft. It has
proven to be an extremely reliable aid to navigation.
Since the selected off-the-shelf unit is a military GPS

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

10-2

receiver, it is equipped with the necessary circuitry to
allow it to use the precise positioning service (PPS). This
PPS capability provides increased accuracy over typical
civilian GPS receivers, and reduces vulnerability to radio
interference. All of these attributes are desirable for a
Space Shuttle navigation system. Since developing a
completely new GPS receiver for the Shuttle would be
prohibitively expensive and the COTS GPS receiver has
these desirable attributes, it was selected as the basis of a
GPS receiver for the Shuttle.

Although the selected COTS GPS receiver is a proven,
reliable product, there are still many differences between
a typical military GPS application and the Space Shuttle.
These differences include both the avionics environment
and the flight environment. We will discuss each next.

2.1 Avionics Environment

Previous applications of the selected COTS GPS
receiver provided control and user interface to the
receiver through a control display unit or through the
Mil-Standard 1553 bus. An interface manager function
in the receiver accommodates the different interfaces,
including service specific (Army, Navy, Air Force)
variations in the 1553 bus controls. The Space Shuttle
uses a modulator/demodulator (MDM) serial I/O bus,
which requires a new hardware interface in the receiver
and also new interface software in the receiver.
Additional interface software changes inside the receiver
were needed to process Space Shuttle flight software
unique antenna lever arm and attitude references.

2.2 Flight Environment

There are several differences between the Shuttle flight
environment and military aircraft. These include vehicle
speed, altitude, and flight attitude. Although the original
motivation for installing GPS in the Shuttle was
replacement of TACAN (available only during the
landing phase), GPS is available during all Shuttle
mission phases. So the Shuttle avionics system was
modified to use GPS in all flight phases, including the
launch and orbit phases in addition to the landing phase.

Speed is a difference in the flight environment as typical
speeds for military aircraft range from zero in hovering
helicopters to less than Mach 3 for jet fighter aircraft.
This contrasts with the Space Shuttle, which on orbit
operates at speeds of up to Mach 25. Furthermore,
navigation calculations for military aircraft are typically
performed using either rhumb line or great circle
techniques. Except during the landing approach, the
Shuttle must use ballistic propagation algorithms.

A second consequence of the Shuttle's high speed is that
satellites are typically visible for a much shorter period,
thus increasing the satellite selection workload. For an
aircraft, a satellite is typically visible for approximately
six hours as the satellite traverses from horizon to

horizon. For the Space Shuttle, this visibility window is
reduced to approximately 45 minutes. Satellite selection
in the COTS GPS receiver requires constantly choosing
from among all the visible GPS satellites the set of four
satellites that provides the best navigation solution. This
is a complex calculation, and since the high speed of the
Shuttle requires more frequent satellite selection
computations, the computational resources available for
other tasks are reduced.

Altitude presents another difference in the flight
environment, since military aircraft typically fly at
altitudes of less than 20 kilometers while the Space
Shuttle flies at altitudes in excess of 500 kilometers. An
important consequence of the Space Shuttle's increased
altitude is that at any moment, more satellites can be
visible to the Space Shuttle than are visible to an aircraft
in atmospheric flight. This increases the number of
satellites that must be evaluated for inclusion in the
navigation solution, further increasing computational
workload. Additionally, on orbit, the Space Shuttle has
line-of-sight visibility to GPS satellites up to 20 degrees
below the local level plane, potentially changing
parameters of the satellite selection algorithms.

A final flight environmental difference is vehicle
attitude. Military aircraft, including jet fighters, spend
most of the time in a heads-up attitude. Therefore, for
military aircraft a single GPS antenna on an upper
surface has unobstructed line-of-sight to a sufficient
number of GPS satellites most of the time. The Space
Shuttle, on the other hand, frequently orbits in a heads-
down attitude for extended periods. Also, during entry,
the Shuttle flies at a relatively high pitch attitude, which
obstructs line-of-sight to a large portion of the sky.
Consequently, the Shuttle must use two GPS antennas,
one on an upper surface and one on a lower surface.
Since the navigation algorithms determine position
based on the location of the receiving antenna, it is
necessary for the software to decide which antenna is
receiving the signal from each satellite, a problem not
faced by the COTS GPS receiver.

2.3 Similarities to Other Applications

The differences between avionics and flight
environments just described are significant and
extensive. However, most of the COTS GPS receiver
hardware and software were compatible with the Shuttle
environment. For example, the basic hardware
characteristics such as packaging and power required no
change. Much of the COTS GPS receiver's internal
software also required no changes including the radio
frequency control processing, including the internal
receiver moding and control, and the geometric
calculations to reduce geometric dilution of precision
(GDOP). Other unchanged off-the-shelf functions of
particular importance are the military performance
accuracy and the security related processing in the
receiver (Selective Availability, anti-spoofing, and anti-

10-3

jamming). As these unchanged characteristics far exceed
the new and changed characteristics; it is reasonable to
treat the Shuttle's modified COTS GPS receiver as
tailored-COTS rather than as an entirely new product.

Analysis and Risk Assessment (CARA) to guide this
resource allocation [12].

3.1.1 CARA Overview

3 Approach

The tailored-COTS environment presents significant
new issues in resource allocation and verification and
validation techniques. Other researchers have
documented similar modifications to their processes for
COTS applications. These modifications include process
changes running through the entire range of the
Procurement, System Engineering and Integration
activities and have been documented for United States
military procurements. Software engineering processes
must be tailored to incorporate new computing system
standards and methodologies. Avionics System
Engineering processes must evolve and adapt to
dynamically changing COTS Non-Developmental Item
product lines that incorporate emerging standards [11].
While the solutions provided are employing commercial
standards and off-the-shelf products, a major role to be
played by the integrating organization is to become the
trusted subsystem integrator. The organization will put
wrappers around the commercial technologies to meet
the customers' needs [17].

The first consideration in any IV&V effort is to
determine the optimum allocation of finite IV&V
resources. This process is complicated in the case of
tailored-COTS because it is neither necessary nor
economically feasible to perform comprehensive IV&V
of the entire software product.

The software in a tailored-COTS product can be
partitioned into three classes: new or modified, not
modified but affected operationally, and unaffected. The
first class, new or modified, is easy to assess since it
clearly merits IV&V and can be dealt with using
standard IV&V methods. The third class, unaffected, is
also easy to assess, as it clearly does not merit IV&V.
But the second class, not modified but affected
operationally, presents two problems: identification and
verification. The focus of this paper is the development
and application of methods for identifying and verifying
software code of the second class.

3.1 Criticality Analysis and Risk Assessment

A fundamental step in any IV&V project is the
allocation of the available technical staff resource. Both
the number of analysts and the overall project schedule
constrain the activity. Since the amount of potential
IV&V work on any complex project exceeds the
available resources, it is necessary to allocate the
resources to achieve the greatest benefit. NASA's IV&V
contractor on this modified COTS GPS receiver project,
AverStar, Inc., employs a process known as Criticality

CARA is based on the notion that there are two key
factors to consider in IV&V resource allocation:
criticality and risk. Here, criticality is a measure of the
consequences of an error in a particular software
function. Risk is a measure of the likelihood of an error.
Table 1 provides a synopsis of the CARA process.

Table 1 : Criticality Analysis and Risk Assessment
Process

Phase Step Activity

Pr
ep

ar
at

io
n

1
Establish CARA team
including domain experts and
IV&V process experts.

2

Decompose the software
system into critical functions.
These should be functionally
distinct and sufficiently small
to permit analysis by a single
individual.

e o
■c a
s
>

3
Develop criticality and risk
criteria, starting with the
baseline CARA factors.

4

Rate each critical function
using the selected criteria and
compute overall CARA
scores.

'S.
O u

1/1
>

>

5
Set threshold levels to map an
IV&V level (degree of
scrutiny) to the CARA scores.

6

Perform software size
estimates using measures such
as source lines of code or
function points.

7

Estimate IV&V effort required
using the size estimates of
Step 6 and IV&V levels of
Step 5.

8
Repeat Steps 5 and 7 as
necessary such that a feasible
work plan is achieved.

10-4

CARA is an iterative process. It is performed once at the
outset of an IV&V project, then repeated periodically.
This iteration is necessitated by several factors. For
example, as the project progresses, the IV&V team gains
greater insight, enabling refinement of the analysis.
Also, the software requirements and design can evolve,
changing both criticality and risk, and even introducing
new critical functions.

3.1.2 Shuttle COTS GPS Receiver CARA

For the Shuttle's modified COTS GPS receiver project,
an initial CARA was performed after the IV&V team
reviewed all available documentation. This included
requirements and design documentation for the baseline
military COTS GPS receiver and proposed changes to
the COTS GPS receiver's embedded software to adapt it
to the Shuttle. The team also reviewed applicable
changes to the Shuttle general-purpose computer flight
software. Additionally, the team analyzed development
flight test data and operational requirements.

The tailored-COTS nature of the COTS GPS receiver
IV&V project changed the CARA process significantly.
Added factors in assessing risk were necessary to
properly attribute risk reduction due to the shelf life of
the COTS code. So it was necessary to identify and
consider separately the changed and new code and the
code that was not changed (or at least not changed
much). Other new considerations that affected both
criticality and risk were the different operational
environment and the availability of historical data.

The differences between the operational environment of
the Shuttle and previous applications of the selected
COTS GPS receiver affected both criticality and risk.
For example, the more rapid change in the relative
configuration of the satellite constellation could amplify
the consequences of errors in satellite selection
algorithms. The differences in operational environment
also increased the risk of problems in satellite selection
because the algorithms must operate more frequently and
track a larger number of satellites.

Risk analysis was expanded to include assessment of the
degree to which each unchanged (or little-changed)
critical function interacted with new or extensively
changed critical functions. This determination was based
on analysis of the software requirements and design
documentation as well as mission analysis.

Risk analysis was augmented via problem databases
maintained by the manufacturer and the United States
Department of Defense. The reasoning was that critical
functions, which had historically experienced a larger
number of programming and operational errors, were
considered more likely to contain errors with respect to
the new environment.

Prior to the initiation of the IV&V effort, NASA had
flown a prototype modified COTS GPS receiver on
several Shuttle missions. These flight experiments
provided a wealth of data that the IV&V team analyzed
to gain further insight to aid the CARA.

The initial CARA guided the detailed requirements
analysis phase of the modified COTS GPS receiver
IV&V project. Subsequent CARAs were augmented
with the lessons learned in previous IV&V phases,
additional flight experiments, and continued monitoring
of the operational experiences of military users of the
selected COTS GPS receiver.

3.2 Tools

Software analysis tools are valuable in any IV&V effort
because the tools can automate certain analysis tasks.
Software tools are especially useful in the case of
tailored-COTS because the majority of the software
already exists when the project begins, so the tools can
be used much earlier in the IV&V activity.

Many standard reverse engineering and software
analysis tools are useful aids to IV&V. Among these are
commercial tools intended to support maintenance of
code [16] and various tools in an advanced state of
research. For example, research tools exist that compute
worst case execution time and that handle advanced
programming constructions including: limited recursion,
analytically complex loops with multiple exits, non-
looping functions, function pointer calls, data pointers,
non-terminating loops and functions, and multiple entry
points [4]. Other useful tools produce diagrams to aid
understanding and document the design [18]. Tools that
compute cyclomatic complexity are also useful,
particularly in support of the CARA, as cyclomatic
complexity has been shown to be a reliable risk indicator
[6].

Several static analysis tools are especially useful in
identifying code that interacts extensively with new or
changed code [4, 5, 15, and 21]. Set/use identification
tools allow an analyst to rapidly assess the interactions
from a data flow perspective. Flow chart generators and
call trees provide a control flow perspective. Of course,
these tools are also valuable during detailed analysis of
the critical functions selected via the CARA.

Another class of tools that is particularly useful in the
tailored-COTS environment is special purpose code
audit tools. These are tools designed to automatically
locate and assess particular patterns. For example, while
on orbit, the Shuttle has line-of-sight visibility to more
satellites than does a typical COTS GPS receiver user in
atmospheric flight. Therefore, it was necessary to verify
that all applicable tables and arrays are properly sized for
the Shuttle environment. This task was well suited to a
custom code analysis tool. Special purpose audit tools
were also produced to rapidly locate additional instances

10-5

of problems identified from historical databases. Among
these were tools to identify and check instances of
function calls, to search for potential instances of
division by zero, and to search for potential instances of
indexing arrays beyond their limits.

3.3 Scenario Analysis

Software scenario analysis is a team problem solving
technique that seeks to understand the behavior of a
software system responding to various external events. A
software scenario begins with an external event, and
ends when the system resumes nominal cyclic operation
or an error occurs. A similar team approach has been
used to verify requirements for real time spacecraft
systems [19] and relates to techniques for stepwise
refinement and verification used in the Cleanroom
approach [13].

Our approach to software scenario analysis can be
summarized as the following sequence of activities:

• Using group-brainstorming techniques, a large
number of potential scenarios are postulated. This is
aided by both operational environment expertise and
critical function expertise that analysts have gained
in earlier phases of the IV&V project, particularly
requirements analysis.

• Using a process similar to CARA, all scenarios are
ranked based on criticality and risk.

• The primary IV&V analyst assigned to the critical
function most involved in the scenario initiates
analysis for each scenario. The analyst formally
documents the control and data flows in a scenario
analysis report.

• When flow passes to another critical function,
analysis responsibility is transferred to the analyst
with appropriate critical function expertise. This
transfer is repeated until the scenario reaches a
logical conclusion. Each analyst records his or her
findings in the scenario analysis report.

• The lead analyst for the scenario presents the report
at a peer review meeting and the entire scenario is
discussed in detail. This step verifies the results and
often suggests new scenarios and interactions with
other critical functions.

Operational scenario analysis is frequently a valuable
IV&V technique. But, it is particularly useful in the
tailored-COTS environment because it is an efficient
means to identify and evaluate the behavior of critical
functions that are not changed but that are operationally
affected by changes in other areas. In the case of the
modified COTS GPS receiver, operational scenario
analysis resulted in the identification of a number of
subtle software issues. Additionally, operational scenario
analysis was valuable in follow-on CARA updates and

resulted in the inclusion of two new critical functions in
the IV&V activity.

3.4 Model Checking

Model Checking is a formal verification technique in
which assertions about a finite state machine process
model are automatically tested [1- 3, 7 - 10, 15, 22, and
23]. Model checking is useful for a variety of
verification approaches [20]. For example, it is useful as
a means to assess liveness properties of the underlying
finite state machine [8]. Model checking has also been
demonstrated as means to automatically generate test
cases [2].

The principal difficulty in model checking, from the
analyst's perspective, is producing the model. It is
necessary both to develop the model and to verify its
equivalence to the system under consideration. Tailored-
COTS can be an ideal candidate for model checking
because the majority of the source code exists when
IV&V begins. Consequently, it may be possible to
automatically translate the source code into the modeling
language, reducing labor and increasing the likelihood of
an accurate model.

For the modified COTS GPS receiver IV&V project,
model checking proved to be an extremely valuable
adjunct to the scenario analysis process. For example, a
critical portion of the COTS GPS receiver software
(Receiver Manager) is implemented as a set of finite
state machines. This critical function manages the five
satellite tracking channels, which perform multiple tasks.
The CARA suggested that this function was high in
criticality and risk, and preliminary scenario analysis
supported the CARA. Scenario analysis brainstorming
revealed numerous scenarios with respect to Receiver
Manager. Unfortunately, the complexity of the function
would make manual analysis of all the scenarios
prohibitively time consuming.

Since the source code was structured as a set of finite
state machines, it was a straightforward task to translate
the source code into the model checking language
Promela [14] for use with the Spin model checker. Using
Spin, it was possible to automatically check all of the
Receiver Manager scenarios [1]. This allowed us to
verify liveness properties of all of the possible
configurations of the finite state machine. In particular, it
identified a singular situation in which a receiver
channel could be frozen in a certain state (a deadlock).
Additionally, a byproduct of the model checking process
is a scenario trace that shows how the deadlock state can
be reached. This information greatly facilitated manual
verification of the problem scenario.

10-6

3.5 Historical Databases

A major benefit of tailored-COTS is that it has an
operational experience base. Insight into operational
experience can greatly facilitate CARA and can also
help to identify the unchanged but operationally affected
code. Some of the sources of operational experience
information are:

• User group databases. Since the COTS GPS receiver
is a military product shared by all branches of the
armed services, there is a joint program office that
maintains valuable data. There are often USENET
users' groups that can be significant sources of
operational information.

• Vendor problem databases. These databases provide
insight into both criticality and risk. In some cases,
they may even contain useful information on
previous tailoring of the COTS product. The COTS
GPS receiver manufacturer maintains a problem
database that was extremely beneficial to the IV&V
effort.

• Test results. There should be a wealth of useful test
results for any operational product. This information
can augment the problem databases. However,
because of its size, it should not be used as a
primary reference. In the case of the modified
COTS GPS receiver, several Shuttle missions
gathered data using different versions of the
receiver, including production prototypes.

4 Conclusions and Future Work

The Space Shuttle's modified COTS GPS receiver
IV&V activity has demonstrated that COTS can be
successfully tailored to operational environments for
which it was not originally intended. The key difference
between tailored-COTS IV&V and traditional IV&V is
the need to identify and verify portions of the software
that are not changed but that are operationally affected
by the new environment. The techniques that proved
most beneficial were a modified criticality analysis and
risk assessment process, custom source code analysis
tools, software scenario analysis, and model checking.
Finally, historical databases were found extremely
valuable sources of information.

There are significant opportunities for further research in
the area of tailored-COTS IV&V. For example, tools
that automatically extract finite state machine models
from procedural language source code would facilitate
model checking. There is also a need for tools to support
the scenario analysis process and to support CARA.

5 Acknowledgements

The authors wish to acknowledge the support of
AverStar, Inc. and the NASA IV&V facility in Fairmont,
West Virginia. In particular, Prof. Jack Callahan of West
Virginia University and Steve Husty of AverStar
contributed extensively to the model checking activity.
We also wish to acknowledge the members of the
modified COTS GPS receiver IV&V team: John
Bradbury, Reid Brockway, Don English, Larry
Wiederholt, and David Wirkkala.

References

[1] Beims, M., and Callahan, J. Independent validation
and verification of firmware. NASA 2nd Annual
Workshop on Risk Management (WoRM 99). October
28-29,1999. Fairmont, WV.

[2] Callahan, J. Model checking as a test case generator.
Work in Progress Presentation. Fall 1998. NASA
Software IV&V Facility, Fairmont, WV.

[3] Clarke, E., and Gluch, D. History of model checking.
SEI/CMU Site Visit Presentation. Winter 1998. NASA
Software IV&V Facility, Fairmont, WV.

[4] Engblom, J. Static properties of commercial
embedded real-time programs, and their implication for
worst-case execution time analysis. In: Proceedings of
the Fifth IEEE Real-Time Technology and Applications.
1999. pp 46-55.

[5] Hayman, K. An analysis of ordnance software using
the MALPAS tools. In: Proceedings of the Fifth IEEE on
COMPASS '90, Systems Integrity, Software Safety, and
Process Security. 1990. pp 86 - 94.

[6] Heimann, D. CATS-an automated user interface for
software development and testing. In: IEEE Proceedings
Annual Reliability and Maintainability Symposium.
1996. pp 163- 166.

[7] Holzmann, G. The spin model checker. IEEE Trans,
on Software Engineering, Vol. 23, No. 5. May 1997. pp
279 - 295.

[8] Holzmann, G., and Peled, D. An improvement in
formal verification. Proceedings FORTE 1994
Conference, Bern, Switzerland.

[9] Husty, S. An automated software maintenance
process for the firmware using model checking
techniques draft version. Master of Science Project
Report. University of West Virginia. 1999.

[10] Joseph, S. Fault injection with model checking,
Ph.D. Thesis, University of West Virginia. December
1998.

10-7

[11] Kuehl, C. A process direction for common avionics
developments using commercial hardware and software
components: The avionics systems engineering
challenge. In: Proceedings of the 16th Digital Avionics
Systems Conference (DASC)., conference publication
AIAA/IEEE Volume: 2. 1997. pp 6.4 -1- 6.4-9.

[12] McCaugherty, D. The Criticality and Risk
Assessment (CARA) method. Workshop on Risk
Management (WoRM) 98. 26 October 1998.
http://research.ivv.nasa.gov/worm98/proceedings/mccau
gherty.pdf

[13] Mills, H. Stepwise refinement and verification in
box-structured systems. Cleanroom Software
Engineering: A Reader. 1996. pp 169 - 197.

[14] Nagulakonda, V. Creating models from source
code. Work in Progress Presentation. Winter 1998.
NASA Software IV&V Facility, Fairmont, WV.

[15] Ogasawara, H., Aizawa, M., and Yamada, A.,
Experiences with program static analysis. In:
Proceedings of the Fifth IEEE Software Metrics
Symposium. 1998. pp 109 - 112.

[16] Oman, P., Novobilski, A., Rajlich, V., Harband, J.,
McCabe, T., Cross, J., Vanek, L., Davis, L., Gallagher,
K., and Wilde, N. Maintenance tools. IEEE Software
Volume: 7. 3 May 1990. pp 59 - 65.

[17] Perry, H. The application of commercial processing
technologies to the airborne military environment. In:
Proceedings of the 17th Digital Avionics Systems
Conference (DASC)conference publication
AIAA/IEEE/SAE Volume: 2. 1998. pp G35/1 - G35/8.

[18] Pierce, R., Ayache, S., Ward, R, Stevens, J.,
Clifton, H., and Galle, J. Capturing and verifying
performance requirements for hard real time systems.
In: Ada-Europe International Conference on Reliable
Software Technologies conference publication Lecture
Notes in Computer Science. 1997. pp 137 - 160.

[19] Prywes, N., Rehmet, P., Sokolsky, O., and Lee, I.
Retrospective exploration of safety properties in real-
time concurrent systems. In: Proceedings of the 16
Digital Avionics Systems Conference (DASC),
conference publication AIAA/IEEE Volume: 1. 1997.
ppl.l -43- 1.1 -51.

[20] Schneider, F. Verification and validation through
model checking. Jet Propulsion Laboratory. California
Institute of Technology, Pasadena, CA. October 12,
1997.

publication Lecture Notes in Computer Science. 1997.
pp 266 - 277.

[22] Vijayakumar, S. Use of historical data in software
cost estimation. Computing & Control Engineering
Journal Volume: 8 3. June 1997. pp 113 - 119.

[23] Williams, C. Spin modeling of CLCS redundancy
management. Work in Progress Presentation. Winter
1998. NASA Software IV&V Facility, Fairmont, WV.

[21] Thornley, J. Static analysis and diversity in the
software development process - Experiences with the
use of SPARK. In: Ada-Europe International Conference
on Reliable Software Technologies, conference

11-1

COTS Software Supplier Identification and Evaluation
April 2000

Ann Miller
Cynthia Tang Missouri Distinguished Professor of Computer Engineering

Department of Electrical and Computer Engineering
University of Missouri - Rolla

1870 Miner Circle
Rolla, MO 65409 USA

Abstract. There has been a consistent trend to
field increasingly large systems. Largeness
requires a longer development cycle that is in
direct conflict with the need to field systems
quickly. Several approaches have been
developed to reduce time-to-market. One of the
most notable methods in reaction to time-to-field
pressures is the inclusion of Commercial-Off-
the-Shelf (COTS) as well as Government-off-
the-Shelf (GOTS) software packages to perform
some of the functions of these new "mega-
systems". This paper addresses some of the
advantages and pitfalls of the inclusion of COTS
components and discusses the need for an
evaluation not only of the COTS component but
also of the COTS supplier. The paper concludes
with some of the lessons learned from the use of
COTS incorporation and of supplier assessments
over a ten-year span of commercial and
government acquisitions.

Keywords. Large project development, COTS
components, software acquisition strategy,
software supplier evaluation.

Introduction. Large-scale systems are
becoming increasingly common, both in military
and commercial systems. As systems provide
more features and functions, the size of the
delivered software increases as well. Sheer size,
whether measured in thousands of lines of code
(KLOC) or in bytes of program code, is one
metric by which to gauge the "largeness" of a
system. Measured by size, software content in
systems seems to be following a software variant
of Moore's Law [1] with exponential increases in
size every generation, or approximately every 18

months if the systems are not related by product
line. Another indicator of growth is development
team size. Complexity and function point metrics
are other possible indicators. Some projects
have also used pages of documentation as a
metric; the author recalls one project in the mid-
1980s for which the requirements specification
documents in ring-bound notebooks spanned
more than six linear feet of shelf space.
Whatever measure is chosen for the yardstick,
numerous examples of large-scale systems can
be found.

As with any task, scale has its effect on software
and systems development. An individual can
assemble an ultralight plane from a kit; so, too,
can one individual design, code, and test a small
software program. But the ultralight builder
cannot undertake the sole design, development,
manufacture, and assembly of a Boeing 777
aircraft. Neither can one software engineer
undertake the sole design, development, code,
and test of a large-scale software program. In
addition to the sheer length of time for such an
undertaking, fielding of a large program requires
a multitude of skills, as does the assembly of the
777 jet. Thus, a large team is necessary.

Typically, no single organization has all of the
expertise to bring a large-scale product to
market; even if the expertise were present, it
might be unrealistic to apply all of the
organization's resources to one product. Thus,
development of a large system will likely include
suppliers for portions of the hardware and/or
software. In addition, there is typically a
geographic disbursement not only between the
development organization and the software

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

11-2

suppliers, but also among the various
development teams.

This paper will discuss incorporation of COTS
components into large-scale development efforts
and will provide some lessons learned from more
than a decade of technical contribution on and
management oversight of large programs.

Why is this topic important? Capers Jones [2]
has summarized it most succinctly: "Software
package acquisition actually delivers more
software to business and government users than
almost any kind of development activity. Yet in
spite of the huge volumes of software purchased
or leased every year by companies, civilian
government agencies, and military services, the
process of acquiring packages is curiously
amateurish and unprofessional. Some
organizations have no formal methodologies for
package evaluations and acquisition."

This paper describes a formal software supplier
identification and evaluation process that began
in 1990 and that has evolved over the years.
Specifically, we will examine the need for a
structured evaluation of the COTS vendor as
well as an evaluation of the COTS product itself.
This is not a research paper; it is presented to
practitioners by a practitioner. No theorems will
be proven, no formal assertions will be derived,
no names will be named. However, examples
from commercial and government acquisitions
will be discussed and references will be provided
which span a large spectrum devoted to the topic
of including COTS packages in large-scale
software development.

The Effects of Scale and Time-to-Market. A
large team brings its own set of problems, and
the effects of scale on a project have been
discussed in the literature, from communication
nodes to function points to general project
management. One of the most insightful articles
concerning scale discussed organizational and
management aspects of large projects in terms of
the Tower of Babel [3]. The criticality of
architecture [4] and testing [5] of large systems
has also been analyzed from the practitioner's
viewpoint. Life-cycle models for the large
systems have been discussed and have evolved
over time. [6, 7, 8, 9]. Lastly, there have been
numerous papers devoted to development
processes for large-scale systems, with many of
these based on the Software Engineering

Institute's (SEI) Software Capability Maturity
Model [10]. Lastly, both commercial [11] and
military software acquisition standards have
emerged for summarizing best practices. But no
matter which life-cycle model and development
process and methodology adopted, the basic
effect of largeness on a product is that it takes
longer to build.

On the other hand, in industry, time-to-market
considerations foster rapid fielding of systems,
exactly opposite to the effect of scale on a
project. Military applications have similar
pressures. Once new technology is available to
the warfighter, there is the strong desire to
ruggedize the hardware component and distribute
that technology. Both commercial development
organization and military acquisition offices
have sought ways out of this conflicting
situation. A common approach to field large
systems in a timely manner is inclusion of COTS
packages to provide portions of the total system
functionality. Large-scale government systems
may contain GOTS packages as well.

Reasons for COTS Components. By
incorporating COTS components in a larger
system, the development time for that
functionality is decreased; however, such a
practice is not a panacea. Just because a portion
of coding has been eliminated, the remaining
phases of analysis, design, integration testing and
acceptance testing remain. Still, there are many
reasons to consider COTS packages in addition
to the savings on development time: (i) the
particular packages might require a specific
domain expertise which does not reside in the
development organization, (ii) the package may
be a de-facto standard which customers expect to
be part of the total system, or (iii) it might be an
existing product from another part of the
development organization which is being reused
as part of a business plan to enter new markets.

The Software Acquisition Strategy. The first
issue related to any large-scale effort is to
determine the acquisition strategy. Acquisition
examines three distinct questions. First, what
portions of the total system already exist, either
through re-used software or through a COTS
component? Second, which portions must be
developed? Lastly, of those portions that must
be developed, which can be subcontracted and
which should be developed in-house? In-house
development is often reserved for the "family

11-3

jewels", that is, those portions of the final
product that would give the developing
organization a competitive edge in the
marketplace.

In 1990, the author was the Chief Software
Engineer for a large commercial project in which
the software acquisition priority was to seek
COTS components for as much as possible
beyond those aspects which had been identified
as required for internal development due to
competitive advantage. If COTS packages could
not be found, then and only then, would we seek
qualified suppliers to generate the remaining
functionality. In typical systems development
projects, an enterprise will develop most of the
product themselves. However, for this product,
the initial software size estimate was 12 Million
Lines of Code (MLOC) and the critical
proprietary code was estimated to form
approximately 8% ofthat total. Thus, with more
than 10 MLOC to be subcontracted, it made
good business sense to generate a software
supplier identification and evaluation plan.

Identification of COTS Components. Once
the decision to procure a component has been
made, a careful market analysis of potential
packages must be made. There are several
concerns related to identification of such
software packages. The first issue is
functionality. A COTS package will most likely
not be an exact fit; that is, it may not have all of
the required features or it may have additional,
unwanted features relative to the system
requirements. Since the large-scale system
developer probably will not have access to the
source code of the COTS package, can the
developer assure that the package performs its
intended functions and that unwanted features
won't be able to be invoked when integrated into
the whole? Compatibility is another issue; the
COTS package itself will most likely be
evolving. What is the vendor's release plan?
Typically, a customer incorporating a COTS
component does not have control or influence in
the package's evolution. Will future releases be
backward compatible? What is the package's
quality and reliability? If the package is plagued
with numerous patches between scheduled
releases, testing time for the larger system
increases. Large systems tend to be long lived
once they are fielded due to the significant
investment in development. Therefore, the
quality, reliability and trustworthiness of the

COTS package are critical considerations. If the
package includes features that are not going to be
implemented in the larger system, can feature
blocking be assured or will these functions be a
potential cause for total system failure or
degradation of service? Military systems are
prime targets for hackers; many times hackers
find their way into a government system by
defects in COTS components. Another concern
is obsolescence. Will the package become
outdated by the time it is fielded in the larger
system? This is a consideration because of the
long development time of the larger system and
because that such systems typically have a long
half-life.

Evaluation of COTS Components. Once a set
of potential packages are identified, the next step
is evaluation of the contenders. The product
evaluation should include quality and reliability
as well as functionality and performance. In
addition to the "black-box" evaluation of the
product, the requirement for the product's
functionality and its interface within the total
system should be carefully defined and
documented. The evaluation process should
down-select the candidate packages to a small
number. In some cases, our initial search for
products located up to 100 potential packages
and exhaustive investigation would reduce the
number to a short list of 10 or fewer. More
detailed product tests would then be performed
on those packages.

Supplier Identification and Evaluation
Process. Once the short list of products have
been evaluated and some potentially eliminated
from consideration, it is time for an assessment
of the vendors of those remaining products. The
initial phase of the supplier evaluation process
should examine the package's overall score in
the product evaluation, which include not only
performance and reliability but other factors such
as cost and other consumer evaluations. We
typically would determine the top three
contenders and proceed to the second phase with
this set. This next phase would consider three
factors: (i) the domain expertise of the vendor,
(ii) the business and financial health of the
vendor, and (iii) the results of an on-site process
assessment of the vendor.

We felt that the selection of a COTS software
supplier should be a variation of the selection

11-4

process for any software supplier [12]. So the
primary, but not sole, factor is the technical
expertise of the vendor. In addition to technical
concerns, there are business issues to consider.
Is the supplier's company financially sound?
Even if the source code is held in escrow, it may
not be easily supported if the vendor has gone
out of business. And even if the vendor stays in
business, will the software continue to be
supported? Customer service and
responsiveness are factors to consider. Thus, we
felt that an on-site visit would be required. Each
of the business/financial analysis results and the
supplier process assessment results served as
GO/NO GO decision gates.

conducted. The buy versus make decision
should be based on a realistic estimate of the
total cost of each effort.

Structure of On-Site Visit. Because of the
magnitude of software being contracted in the
first system mentioned, we developed a supplier
process assessment that could be tailored for the
size of the company and for the type of software
activity. If the potential supplier would be
developing software, the visit ranged from one to
three days depending on the size of organization.
For COTS products, the visit was streamlined to
a one-day visit regardless of the size of the
company.

Software Supplier Assessment. The evaluation
of a vendor should include not only the quality
and reliability of the product but also the quality
of the vendor's configuration management and
release processes. These assessments do not
need to be long, arduous evaluations. They can
be streamlined to fit the size and scope of both
the product and the vendor. Basically, the
question is: What is the real cost of the software
package? The total costs include not only the
licensing, the integration and interface testing in
the larger system, but also training, long-term
maintenance, and the management of upgrades
over time. The answers to these cannot be
directly calculated but can be indirectly
approximated by a combination of product
evaluation, business analysis, and supplier
assessment.

Two entities can greatly assist in the
identification and evaluation of COTS
components: the requirements specifications and
the interface control document (ICD). The
former helps to answer questions related to the
applicability of the package; the latter helps to
scope the level of effort needed to incorporate
the package, thereby determining some of the
hidden costs. The ICD is also a critical factor in
testing of a large system with integrated COTS
components. With a well-written and structured
ICD, re-usable interface tests can be developed.
The ability to reuse and/or automate tests
becomes crucial. Incremental test planning is a
necessity in any large-scale system because the
system is evolving. Whenever COTS packages
are incorporated, additional tests concerning
error handling at the interface should be
designed. In addition, performance and stress
testing of the component's interface should be

We structured the supplier process assessment
using the SEI Capability Maturity Model as the
basis. The vendor evaluation had many
similarities to an SEI Software Process
Assessment (SPA). Both use an interview and
discussion format and we selected many of our
questions from the SEI questionnaire. In
addition, the lead of the evaluation team was
always a trained SEI assessor. The evaluation
teams generally were had a total of three
members, which is a reduction from the SEI
assessment team size. The development team
which would be incorporating the package was
always represented on the assessment team. The
third member would come from any part of the
development team or from the contracts
organization which had professionals who
specialized in software contracting. If these non-
lead members were not certified SEI assessors,
then they received a short in-house training
course in the supplier evaluation process prior to
visiting the vendor. One of the differences from
the initial SEI assessment format is that we
scheduled private interview sessions with a
senior executive manager and with the chief
technical officer or chief scientist or chief
software engineer (depending on the vendor's
organization). For the COTS vendors, we also
spent more time with the Quality Assurance
team and with the configuration management
team than with the development and test teams.
We also met with customer service and support
teams of the potential COTS supplier. Another
difference is that the SEI questionnaire, while a
basis for the discussions, was not completed by
the vendor in advance. Lastly, as with an SEI
assessment, we did present a findings session at
the close of the visit. The findings presentation
included a supplier rating, but did not determine
an SEI maturity level from 1 through 5. Rather,

11-5

the rating was one of fully qualified, qualified, or
not qualified. Most of the suppliers ranked in
that middle category. However, in the most
important portion of the findings, we listed what
we perceived to be the strengths and weaknesses
of the supplier. Improvement in weak areas
became contract requirements if we chose to
pursue the relationship further.

In a commercial satellite communications
example, several packages related to orbital
analysis and telemetry tracking and control that
were efficiently incorporated due in large part to
the careful supplier evaluation. In another case,
the board of directors of a small company
mandated the company's president to address the
action items resulting from our supplier
evaluation regardless of whether we entered into
a contract. On the flip side, we terminated a
contract with one supplier who had excellent
domain expertise because the first deliverables
from the organization were extremely poor; the
root causes of the poor quality were the very
areas identified as opportunities to improve from
the supplier evaluation.

Assessment Follow-On. We instituted a
mechanism of communications and follow-on
with our contracted suppliers. This included a
management forum of quarterly meetings of
senior executives, primarily from those suppliers
who were developing software. There was also a
periodic technical forum that included all of our
suppliers. This was especially important in the
use of one COTS product, namely the mandated
configuration management tool. We kept open
the option of re-evaluation. These re-evaluations
were based on contractually required
improvements (if any), and issues of concern
from the sub-contract managers. The follow-on
visits were informal with mutual presentations,
questions, and discussions. With all of the
suppliers, we provided an opportunity to
evaluate us and let us know how well we were
doing as contract managers. We felt that this is
an important aspect of growing a long-term
supplier relationship. Total improvements can
best be made in a spirit of constructive and
honest feedback.

Conclusions and Lessons Learned. The
following are some of the findings related to
implementing supplier process and product
evaluations in large-scale development, which

include a mix of both commercial and
government systems.

First, the use of COTS packages can reduce total
system development time, but the savings are
partially offset by increased design time up front
and increased interface testing downstream. It is
critical to scope out the total life-cycle cost of the
COTS package, not merely the licensing cost. A
formal COTS identification and evaluation
process can greatly assist in this scoping effort.
The COTS evaluation should include an
assessment of the vendor's process as well as of
the package itself. The decision to incorporate
the COTS component should be based on
product, process, and business factors.

Lastly, a hard lesson learned concerns whether or
not to modify a COTS package. Since the
package is most likely not a perfect fit, there is a
tendency to work with the vendor and modify the
package. The short version of the lesson is:
DON'T. If you feel that you must modify the
package, modify your process first. Then, and
only then, if you absolutely must modify the
package, build a wrapper and still do not modify
the package. If that still doesn't convince you,
perhaps simple economics will. If you modify
the COTS package, you may void the warranty.
If you contract with the vendor to modify the
package, you will be contracting with them for
the life of your product.

In summary, large-scale systems are difficult
project development activities with significant
time constraints and with anticipated but
unknown changes. Inclusion of COTS
components can reduce total life cycle costs and
support the successful fielding of a quality
product. The quality and reliability of that
system can be improved with a COTS product
and process evaluation.

References.
1. Tom DeMarco and Ann Miller, "Managing

Large Software Projects", IEEE Software,
July 1996.

2. Frederick P. Brooks, Jr., The Mythical Man
Month, Essays on Software Engineering,
Addison-Wesley, 1975.

3. Capers Jones, Patterns of Software Systems
Failure and Success, International Thomson
Computer Press, 1996.

11-6

4. Len Bass, Paul Clements, and Rick Kazman,
Software Architecture in Practice, Addison-
Wesley, 1998.

5. Daniel M. Marks, Testing Very Big Systems,
McGraw-Hill, 1992.

6. W. W. Royce, "Managing the Development
of Large Software Systems: Concepts and
Techniques", originally published in
Proceedings of WESCON, August 1970;
also available in Proceedings of 9th

International Conference on Software
Engineering (ICSE 9), IEEE/ACM, 1987.

7. Bill Curtis, Herb Krasner, Vincent Shen, and
Neil Iscoe, "On Building Software Process
Models Under the Lamppost", Proceedings
of 9' International Conference on Software
Engineering (ICSE 9), IEEE/ACM, 1987.

8. Barry Boehm, "Anchoring the Software
Process", IEEE Software, July 1996.

9. Ann Miller, "Design and Test of Large-
Scale Systems", Joint Proceedings of the
International Conference on Software
Management and International Conference
on Applications of Software Measurement,
March 2000.

10. Watts Humphrey et al, A Method for
Assessing the Software Engineering
Capability of Contractors, Technical Report
CMU/SEI-87-TR23, Software Engineering
Institute, 1987.

11. IEEE Standard-1062, Recommended
practice for Software Acquisition, Institute
of Electrical and Electronics Engineers,
1993.

12. Jim Nielsen and Ann Miller, "Selecting
Software Suppliers", IEEE Software, July
1996.

12-1

Maintaining COTS-Based Systems
Dr. Mark R. Vigder

John Dean
National Research Council of Canada
Institute for Information Technology

Ottawa, Ontario
Canada

K1A 0R6
{mark.vigder|john.dean} @nrc.ca

Summary: After deployment, all software
systems require an extensive and expensive
phase of maintenance and management
regardless of whether they are COTS-based
or custom built. Understanding how COTS-
based systems are maintained, and why they
are different from custom-built systems, can
lead to systems that are better and more
cost-effective over their lifetime.

1 Introduction
After deployment software systems enter a
phase of maintenance, management, and
evolution that can last many years until final
decommissioning [3,5]. This post-
deployment phase is the longest and hence
the most expensive phase of the software
lifecycle. Success during this phase is often
the determining factor as to whether a
software system is cost-effective over its
lifetime.

Building a software system from COTS
products does not change the importance nor
the expense associated with maintenance,
evolution and management. COTS-based
systems must continue to satisfy evolving
user requirements, failures of the system
must be dealt with, the system must adapt to
the ever-changing environment, and
managers must be able to monitor and
control the deployed system. These activities
are necessary whether a system is built from
scratch or built using commercial products.

The nature of the post-deployment activities
changes when dealing with COTS-based
systems rather than with custom built
systems. If COTS-based systems are to be
successful over the many years that they are

expected to be in service, organizations
involved in building or acquiring COTS-
based systems must understand and
accommodate these differences.

2 COTS-based systems: why is
maintenance different?

Software maintenance includes all the
activities required to evolve a software
system over its lifetime. Although the
motivation for maintaining COTS based and
custom systems is the same, the nature of
the activities required of the maintenance
personnel is different. The different
activities required for maintaining COTS
intensive systems arise for a number of
reasons.

Primary among the reasons for the different
maintenance activities is the fact that the
evolution and upgrades for the individual
COTS products are outside the direct control
of the system developers and acquisition
organizations. The COTS products are
maintained and supported by the COTS
product developer or their agent. The system
developer must treat these products as single
black-box entities with little or no visibility
into the internals of the product and perform
the maintenance at the level of large-scale
products rather than at the source code level.
The only source code being maintained by
the system developer is that required for
integrating the large-scale COTS products.
This includes code for wrapping and
tailoring the individual products, as well as
the "glue code" required to connect the
products together. Wrapping and tailoring of

NRC Report 43626. This work was funded by
Defence Research and Development Branch, Dept.
of National Defence, Canada.

Paper presented at the RTO 1ST Symposium on "Commercial Ojf-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

12-2

the products (without accessing the products
source code) becomes necessary to
overcome architectural mismatch between
products, to customize the product to
conform to local requirements, and to build
workarounds to overcome the inevitable
bugs (and features) that are included in any
COTS product.

From the acquisition agencies' perspective,
they have effectively ceded control over
maintenance and evolution of large parts of
the system to outside commercial agencies.
Maintenance of the COTS intensive system
is now driven in a large part by the vendors
of the different products rather than by the
system developer. In effect, having
amortized the cost of development and
maintenance among many different users,
acquisition agencies are now one among
many users driving the direction of the
COTS software evolution.

2.1 Maintaining a COTS-based
system
In order to more effectively maintain and
manage COTS-based systems it is necessary
to identify the activities of the maintenance
and management personnel. Once the
activities have been identified, strategies can
be developed to facilitate these activities.
COTS-based maintenance and management,
although similar in many respects to
maintaining custom-built systems, has
qualitative differences. These differences
result in the following activities in the post-
deployment phase (Table 1).

Component reconfiguration. Reconfiguring
components is the act of replacing, adding
and deleting components within the system.
Reconfiguration occurs for many reasons,
perhaps the most common being the
frequency with which commercial product
vendors release updated versions of their
software. It is not uncommon for each
product to be upgraded two or three times
per year. Often, system integrators are
forced to replace older product versions with
the upgrades in order to fix bugs or improve
functionality. Other reasons for

reconfiguring the components are to replace
aging components with better products from
competing vendors, or to add and delete
products as the functional requirements of
the system evolves.

Reconfiguring the components is an
expensive activity requiring the integrators
to go through a complete release cycle
including product evaluation, testing,
design, integration, and system regression
testing.

Troubleshooting and repair. All systems fail
and COTS-based systems are no different in
this respect. However, with COTS-based
systems maintenance and management
personnel generally cannot look inside
components when trying to isolate the cause
of the failure. Information must be gathered
by experimenting at the edges of the
components. Identifying the source of the
fault requires running a series of
experiments to determine the product or
products causing the problem [2].

Identifying and fixing the fault is no longer
an activity performed solely by the system
builders. Having used third-party products,
system builders must now work closely with
the support staff of the product suppliers,
and with the general product user
community. Where faults involve complex
interactions involving sets of products from
different vendors, many different
organizations may be involved in the
troubleshooting and repair of the system.

Configuration management. For COTS-
based systems configuration management is
done at the level of products rather than at
the level of source code. Issues that
maintainers must address include: change
history for each individual product;
availability and support level provided by
the product vendor; management of
configurations of the COTS-based system
that are installed at each deployed site;
compatibility requirements and constraints
between sets of products; and licensing
issues associated with each product.

12-3

Maintenance activity

Component reconfiguration Updating product versions, replacing COTS products with similar
products, adding/deleting products

Troubleshooting Identifying causes of failures among sets of COTS products, developing
workarounds with the products, liasing with the COTS product
maintainers

Configuration management Tracking versions of different COTS products, tracking deployment
configurations, determining compatible versions of products

Testing and evaluation Testing new product versions as they become available, within the context
of the system into which they will be integrated

Tailoring user level services Enhancing the services available to the end user by configuring COTS
products, combining services of multiple products, etc.

System monitoring Monitoring different aspects of system behaviour, such as communication,
resource usage, process invocation, etc.

Table 1. Maintenance/management activities for COTS-based systems.

Testing and evaluation. Testing and
evaluating COTS products is an ongoing
activity during maintenance. New product
versions as well as new products must be
evaluated for inclusion within the system
and products must be tested during
operational use.

Tailoring user level services. COTS
products provide a generic functionality that
can be used by many applications and
organizations. System integrators must
customize and tailor this functionality to
satisfy the local operational requirements
that are unique to the end-user organization.
Successful systems are those that can be
quickly modified and tailored to meet
evolving user requirements.

For COTS-based systems tailoring involves
an ongoing process of customizing and
configuring products, adding new
components to the system, and combining
services of multiple products in novel ways.
Since integrators do not have access to
product source code this must be done
through gluing products together to provide
enhanced functionality and using vendor
supported tailoring techniques to customize
the products.

System monitoring. System managers and
maintainers must continuously monitor a

system during its ongoing operation. This
must be done to measure performance and
resource usage, watch for failures, and
determine user behavior. Because COTS
software is black box, with limited visibility
into internal behavior, monitoring for
maintenance purposes can be difficult to do
effectively.

3 Planning for post-deployment
Systems are maintainable and evolvable
through their lifetimes because they were
explicitly designed to be so. Maintainability
cannot be built in "after the fact" but must
be considered during the early stages of
analysis and design.

For COTS-based systems, there are two
phases of construction during which system
builders must consider maintainability and
evolvability. The first is during product
evaluation and selection. The products used
to build the system have a great deal of
impact on the characteristics of the system
during its maintenance.

The second phase of construction that
impacts system maintenance and evolution
is the architecture and design of the system.
Different architectural styles have different
properties relative to the evolvability and

12-4

maintainability of a system. By identifying
the properties required of a COTS-based
system an appropriate architectural style can
be applied that provides these properties.

3.1 Product selection
System builders do not control the
individual products, but they do control
which products are selected for integration
into the system. There are many different
criteria used for product selection but system
evolution should be one of the factors
considered when developing criteria for
product selection. A number of properties of
a product affect the long-term evolution and
maintenance of the system.

Openness of the component. A component is
open if it is designed to be visible,
extendible and easily integrated into a wide
array of systems. In general, the more open a
component the easier it will be for
maintainers and managers to monitor,
manage, extend, replace, test, and integrate.
Many factors combine to make a component
open and among things to consider are:
adherence to standards; availability of
source code perhaps through open source
licensing; and ability to interwork with
products from many different vendors.

Tailorability of the product. Much of the
maintenance effort for COTS-based systems
involves tailoring the functionality to meet
evolving user requirements. One of the
criteria for product selection should be the
ease with which the product can be tailored
to satisfy local requirements. Although
products are black box and the source code
cannot be modified there are many
techniques product builders can use to make
their products tailorable. Examples of
tailoring techniques include scripting
interfaces, data configuration files, and
frameworks that can be extended through
the use of inheritance and plug-ins.

Available support community. System
builders require extensive assistance from
external organizations to support
commercial software. This support comes
from the vendor and the user community.

Given that successful maintenance is
dependent on this support, system builders
must evaluate the support available for the
product during the product evaluation
process.

3.2 Designing for evolution
System builders do not own COTS software,
but they do own the architecture and design
used to integrate the software. By addressing
issues of maintainability during the software
design activity, designers can build a system
that facilitates the maintenance activities
associated with COTS-based systems and
avoids many of the pitfalls [1].

There are two major issues that can be
addressed when designing COTS-based
systems for maintainability. The first is the
management of dependencies between the
diverse software elements. Many
uncontrolled dependencies between products
make it exceedingly difficult to modify or
analyze a software system. Component
replacement or addition will be difficult due
to the affects that can ripple through the
various component dependencies. Many
interdependencies also make understanding
failures and isolating faults a more complex
task.

The second design issue that must be
addressed is visibility into the system. A
system is visible if maintenance and
management personnel can instrument and
monitor the system. This involves querying
the system to determine its operational
characteristics, current configuration, fault
incidents, etc. Visibility is a necessary
characteristic for testing and managing
systems. For COTS-based systems, where
there may be limited visibility into the
individual products, designers must build
visibility into the architecture.

3.2.1 Managing product dependencies
Complex and intricate product dependencies
result in a fragile system in which it is
difficult to upgrade, replace, add and remove
components. To alleviate these problems,

12-5

j"EÄT
Interconnection topology Map of the data flow between the COTS components.

Connection infrastructure Mechanism used to transfer data and control among the software
elements, e.g., CORBA, DCOM, RMI.

Interfaces Exposed parts of the COTS software product.

Collaborations Ongoing behaviour required among a set of components in order
to provide a service.

Environment Dependencies made by the COTS product about the
environment in which they are operating, e.g., operating system,
software versions, file structure, etc.

Control mechanism Dependencies caused by assumptions about process structure,
control flow, activation, etc.

Table 2. Causes of component dependencies.

designers must manage the dependencies
between the products so that COTS-base
maintenance is possible.

There are many ways that software
components within a system may be
dependent. Some of these are explicit, such
as the direct transfer of data through an
exposed interface. Other dependencies are
implicit and subtle, such as conflicting
assumptions that different software products
can make regarding the environment under
which they are executing.

Table 2 summarizes the major causes of
component dependencies. It is important for
designers to recognize that they cannot
eliminate dependencies, but they can
manage them in a way that allows for more
effective maintenance [4].

3.2.2 Designing for visibility
Visibility is a property of a system that
permits inspection and instrumentation by
managers and maintainers. Capabilities
involved include event logging, raising
alarms, determining the current
configuration, etc. Visibility is necessary for
debugging, testing, isolating faults and
managing the system.

Designers have little or no control over the
visibility provided by the individual
software products. However, through the

architecture and design a great deal of
visibility can be built into the system by
using the glue and integration code as tools
for monitoring and viewing the system. An
example is shown in Figure 4 in which a
mediator exposes a management interface.
Through this interface different information
about the collaboration and the components
can be gathered such as the events generated
and received by the components, activiations
of the components, component versions, etc.

4 Conclusions
Although component-based software
systems provide many advantages, designers
and users must still expect that the majority
of the lifecycle cost will be incurred after the
initial deployment of the system. Reducing
this cost, and easing the maintenance and
management effort, requires designers and
architects to consider the post-deployment
activities during the earliest stages of
software development. By identifying the
activities that maintenance and management
personnel perform to support component-
based systems, and using a design that
supports these activities, systems can be
made more cost-effective.

Bibliography

[1] David Garlan and Robert Allen and
John Ockerbloom. Architectural

12-6

Mismatch or Why it's hard to build
systems out of existing parts. In 17th
International Conference on Software

Engineering, pp 179-185 1995.

[2] Scott Hissam. Correcting System Failure
in a COTS Information System. In
Proceedings of the International
Conference on Software Maintenance,
pp 170-176, Nov 1998.

[3] Duane W. Hybertson and Ann D. Ta and
William M. Thomas. Maintenance of
COTS-Intensive Software Systems.
Journal of Software Maintenance,
9(4):203-216, 1997.

[4] Mark Vigder and John Dean. Building
Maintainable COTS-Based Systems. In
International Conference on Software
Maintenance, pp 132-138, 1998.

[4] Mark Vigder. The maintenance,
management, and evolution of
component-based systems. In
Component-Based Software
Engineering: putting the pieces
together. Adison-Wesley, to be
published, 2000.

[5] Jeffrey Voas. Disposable Information
Systems: The Future of Software
Maintenance?. Journal of Software
Maintenance: Research and Practice,
11:143-150,1999.

13-1

Detection of Malicious Code in COTS Software via Certifying
Compilers

Robert Charpentier and Martin Salois
{Robert.Charpentier@drev.dnd.ca, Martin.Salois@drev.dnd.ca}

Defence Research Establishment Valcartier
2459 Pie XI Blvd. North

Val Belair, Quebec, Canada
G3J 1X5

April 2000

Abstract

Information technology is more and more a vitally impor-
tant underpinning to our economy and to our society. It is
embedded in everyday applications and animates a wide
class of systems that range from small to large and from
simple to extremely sophisticated. Among the probable
threats for military information systems, the presence of
malicious code within COTS applications has been identi-
fied as a major risk that has not received a lot of attention.
Like a virus that has infiltrated an information system dur-
ing an electronic information exchange, malicious code
integrated into a commercial application could remain un-
detected and present a major risk for the safety of informa-
tion within a military system. In this paper, techniques to
detect malicious code within commercial applications are
reviewed. Emphasis is placed upon the certifying com-
piler, which enforces a formal security specification while
compiling the source code. This emerging technology of-
fers the most comprehensive and sustainable approach for
large applications and for the periodic certification of up-
grades.

1 Introduction

The Defence Research Establishment, Valcartier (DREV)
carries out an extensive R&D program in Command and
Control Information Systems (CCIS) for the Canadian De-
partment of National Defence (DND). During the Infor-
mation Warfare Workshop held in Ottawa in Oct. '96,
several R&D challenges were identified and presented to
DND and industry representatives [17]. Trusted software
design and validation was one of the areas where addi-
tional effort was deemed necessary to meet DND needs.
Of particular concern was the integration of Commercial-
Off-The-Shelf (COTS) software into military information
systems.

Exploiting COTS software through integration poses a
distinct dilemma. On one hand, COTS software is very
attractive; its use promises to reduce development time
and costs. On the other hand, it introduces new risks into
military information systems: hidden functionalities, trap
doors, private control codes giving enhanced privileges,
logical or temporal bombs [6], etc.

A feasibility study completed in 1998 indicates that a
variety of software analysis techniques can be applied to
the management of the risk associated with COTS soft-
ware in military information systems. Among them, the
exploitation of certifying compilers appears to be a very
powerful technology for the efficient yet exhaustive verifi-
cation of software with minimal human supervision. This
paper summarises the lessons learned in the MaliCOTS
project, carried out jointly by DREV and Laval Univer-
sity. The proposed strategy will, after successful imple-
mentation, ensure the safe integration of previously un-
trusted software in military information systems via certi-
fying compilers.

2 Malicious Code

Malicious codes are fragments of programs that can af-
fect the confidentiality, the integrity, the data and control
flow, and the functionality of a system without the ex-
plicit knowledge and consent of the user. We distinguish
between intentionally malicious and unintentionally mali-
cious code. Malicious individuals who, for example, use
such programs to access confidential data generally intro-
duce the first. The second is due to inadvertent human
error, especially during development of the software.

To detect malicious code in COTS software, one must
be able to distinguish between its types. Starting from the
taxonomy proposed by McDermott & Choi [12], a new
taxonomy has been defined that is specifically intended to
facilitate the detection of malicious code in COTS soft-

Paper presented at the RTO 1ST Symposium on "Commercial Ojf-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

13-2

Ad hoc Analysis
Signature-based Analysis
Heuristic-based Analysis

Static Analysis
Flow-based Analysis
Heuristic-based Analysis

Dynamic Analysis

■ Monitoring
• Testing
■ Injecting Faults
• Wrapping

Certification while compiling
Formal Verification
Proof-Carrying Code
Typed Assembly Language

Figure 1: Potential techniques to detect malicious code in COTS software

ware [3].
One of the key concepts of the MaliCOTS project is al-

ways to refer to a security policy to distinguish an accept-
able activity from a potential threat. It reflects the fact that
software functionalities can never be considered malicious
in and of themselves; even reformatting a disk or destroy-
ing a file are useful operations in certain circumstances;
that is why such capabilities were devised and made avail-
able to system users. But in many operational contexts
these functions should not be made available to end-users
because of the associated risks. The most rigorous way to
enforce such a policy is to formalise these constraints ex-
plicitly in a security specification based upon permissible
access mechanisms. This strategy is documented in more
detail in this paper.

In practice, threat that system analysts are typically
concerned with are:

• the presence of trapdoors in COTS packages (as
found in Unix, Windows NT & '98 [6, 9]),

• license expiration logic [16],

• hidden communications (e.g., a CD player software
that is reported to send 'your listening preferences'
to a distributor periodically [15]), and

• other undesirable functionalities such as those
present in the flight simulator in Excel '97 and the
Word '97 pinball machine [1,2].

The next section summarises the feasibility study,
completed in fall 1998, into ways to detect such malicious
code.

3 Technology Options to Detect Ma-
licious Code in COTS Software

Figure 1 identifies a variety of techniques applicable to the
MaliCOTS project, in order of increasing level of com-

plexity.
Reference [4] contains a comparative analysis of these

techniques. In summary, ad hoc techniques consist of code
inspection in search of a known malicious signature or its
generalisation (often called a heuristic). This approach
has been very successful in detecting viruses within ex-
changed files, but its effectiveness in detecting malicious
code in large software applications is limited since a priori
knowledge is needed (i.e., either signature or behaviour
profiles).

Static analysis of code comes from the world of pro-
gram optimisation and software analysis. It consists of
examining the code (perhaps in some abstract representa-
tion) without running it. At present, static analysis is es-
sential to COTS certification because it gives a relatively
precise idea of program behaviour for all possible execu-
tion conditions. However, the technique is limited in capa-
bility, especially when source code is not available, which
is typically the case for COTS. The process requires enor-
mous human effort for very large applications [5],

Dynamic techniques examine the behaviour of the
code while it is running. Such analysis is a pragmatic
approach that offers short-term benefits. Many variants
are available: monitoring execution, running an exhaus-
tive suite of tests, injecting faults in critical variables or
wrapping the commercial code into a software shell that
detects and filters out unwanted activities. Another paper
presented in this conference deals with dynamic detection
and provides supplementary information [18].

Each of these techniques has its place and offers short-
term solutions to the detection of malicious code in COTS
software. However, they are all reactive, in the sense that
they evaluate the COTS package after development, when
detection is made more difficult by the lack of access to
source code.

Being unsatisfied with this situation, we have searched
for a truly innovative approach to COTS integration
that will overcome existing difficulties with the non-
availability of source code, with time-consuming manual

13-3

Figure 2: Certifying compiler — basic concept

inspection of software and with difficulty in ensuring the
completeness of verification.

Certifying compilers have emerged as an extremely
powerful technology to manage the risk associated with
COTS integration. The basic idea is to put enough "intel-
ligence" into the compiler that it will not only produce the
executable code but also perform formal security verifica-
tion. As shown in Figure 2, the compiler needs two inputs:
the source code and the security policy. The compiler then
translates the source code into the appropriate intermedi-
ate language (e.g., assembly, byte code, etc.) along with
embedded security annotations.

The next section describes the concept and gives a
practical feel of its capabilities in our particular context.

4 Certifying Compilers; Concept &
Practice

4.1 Concept

As in human health, prevention is certainly the best cure.
So it is worthwhile from a security standpoint to elaborate
methodologies that guarantee that COTS software prod-
ucts are free of any malicious code from the start. In order
to do that, we propose the inclusion of intelligence in the
compiler to allow enforcement of a security specification
while compiling.

Figure 3 illustrates the most general scheme to pro-
duce trusted software while compiling. The first step con-
sists of compiling the source code and introducing static
annotations in the object file (i.e., byte code for JAVA, as-
sembly language or other intermediate language). It is a
rather simple and mechanical process to introduce the an-
notations. Secondly, the annotated code is submitted to

a verifier (or a verifying linker) that enforces a formally
expressed security specification. By doing so, the final ex-
ecutable application can be assembled safely and sealed
with a security tag before integration into a critical infor-
mation system.

This is a very flexible approach. Not only can the an-
notations be produced rapidly and independently of the fi-
nal integration but also different local security policies can
be enforced in different parts of an organisation on a single
annotated component. Another great advantage of this ap-
proach is that there is no need for the software integrator to
have access to the source code. The only requirement for
the software producer is to adopt an annotation structure
that the integrator can recognise and verify for correctness.
This key feature protects the intellectual property of soft-
ware producers.

The second step of the process (verification) starts with
a comparison of the annotations with the object code. Any
anomalies in the compliance of the code with the anno-
tations can easily be flagged for further investigation. In
other words, if the code is modified after it was annotated,
or if the annotations are changed without any code modifi-
cation, the verifier will rapidly detect it. The only compo-
nent that one must trust in this system is the verifier itself;
there is no need for trustworthiness in the code producer,
the annotating compiler or the transmission channel up to
the verifier. This is a very important feature for security
architects, who may deal with the trustworthiness of only
one component, the verifier.

4.2 Annotation Structures

So far we have not described the content and the struc-
ture of the annotations the compiler produces. Many op-
tions exist, each with its advantages and disadvantages. In

13-4

s
0
u
r
c
e

?

—► Annotating
Compiler

)

Security
Specifications

.exe

ann.

Annotations
Verifier

Unsafe
w.r.t policy

Figure 3: Certifying compiler — generalized concept

the MaliCOTS projects, we examined three possibilities
closely:

• PCC (Proof Carrying Code), developed under the
leadership of Peter Lee and George Necula at CMU
(Carnegie Mellon) and at Berkeley University;

• ECC (Efficient Code Certification), led by Dexter
Kozen from Cornell; and

• TAL (Typed Assembly Language), designed by
Greg Morissett at Cornell University.

PCC is a technique to ensure the safe execution of un-
trusted mobile code. When code is transferred between
a client and a producer, the producer must append to the
code a formal proof that it is consistent with some shared
security policy. The client can easily check the proof by
using a simple and easy-to-trust proof checker. PCC is a
very comprehensive and secure approach [14].

ECC was designed to be a much lighter solution to
code certification. The annotations contain structured in-
formation that qualifies the safety of the code. It was de-
signed for efficiency and performance, sacrificing some of
the rigour of other approaches [10].

TAL proposes to introduce "type"-typing information-
into the code. Basically, software types are static descrip-
tors of logical entities (e.g., variables, constants, character
strings...) and of how they are used in the code. These
annotations are light and informative and can easily be
produced and managed within a comprehensive security
policy [13].

TAL was selected as the technology of choice for the
detection of malicious code in COTS software. Type an-
notations provide an automatic way to verify that a pro-
gram will not violate safety properties and, potentially,

high-level security requirements.
handle:

At this time, TAL can

• control flow safety (i.e., programs cannot jump to
code that was not verified and stack preservation is
enforced),

• memory safety (i.e., access to initialised memory lo-
cations and array bounds checking) and

• type safety (i.e., the compatibility of types in opera-
tions).

Complementary annotations in the "ECC style" will
be considered later in the MaliCOTS project if they are
needed.

In summary, type annotations are static approxima-
tions of the behaviour of the program. Essentially, they
correspond to typing preconditions on code labels. Before
transferring control to any label, the register, stack and
relevant variables must contain values of the types spec-
ified. The type-checker matches each instruction operand
against these constraints to ensure that they do not violate
safety properties.

4.3 Example

To illustrate the concept of annotations, we will now
examine a simple program written in C (Code Excerpt 1)
and compile it to assembly language with annotations
(TALx86 code) as shown in Code Excerpt 2, where an-
notations appear in bold. An expression such as "eax: B4"
indicates that the register "eax" must contain four bytes if
the following instruction is to be executed. Inference rules
are used to verify formally that all conditions are met be-
fore the activation of a given operand (e.g., an arithmetic
operation or a call procedure like those shown in Figure 4).

13-5

Code Excerpt 1: Sample C code

tfdefine TABLEAU 100
unsigned int premiersTABLEAU;

int estPremier(int nombre, int compte)

{
int i = 0;
int iPremier = 1; //sans preuve du contraire, c'estun nombre premier

for (i = 0; i < compte; i++)

{
if (nombre % premiersi == 0)

{
iPremier = 0 ,-
break;

return iPremier;

(ArithBin)
e V- opi : B4 e \- op2 : B4 eh ValidBinops(opi,op2) e h Writeable(opi)

e h arithbin op\, opi : e

{Call)
e h cop : {gi} g \~ ffi(esp) = sptr{g2 :: c'} £ h £-7[esp : sptr{g2 " (e/y(esp))}] j gi

£ h call cop : £[7 : 52]

Figure 4: Two inference rules enforcing annotation checking in TAL

As part of the MaliCOTS project, we are developing an
ANSI C compiler that will produce assembly language for
x86 processors along with the corresponding TAL anno-
tations. Our compiler is based on LCC (Lean retargetable
C Compiler); a public-domain compiler that is well docu-
mented and for which source code is available [7], A beta
version of our TalCC compiler is available for government
release, to allow a broader community to become familiar
with the annotation technology. More information can be
obtained from the authors of this paper.

For next year, we are planning the development of a
JAVA annotating compiler that exploits the same anno-
tation structure as TalCC. It will probably be based on
JIKES, an IBM shareware compiler that is part of Linux
packages. Emerging commercial products will also be
considered ([11]).

5 Discussion & Conclusion

In view of budget reductions and decreasing human re-
sources, integration of COTS software appears to be the
only sustainable approach for Canadian DND [8], At
the present time, system analysts have only such labour-
intensive techniques as static and dynamic verification to
certify COTS software. It is expected that these techniques
will remain useful (and mandatory, in many instances) for

the certification of COTS packages. The MaliCOTS team
values them greatly and attempts to integrate them into a
common framework.

However, it is evident that more efficient and less time-
consuming techniques are needed to handle COTS soft-
ware, especially when periodic upgrades must be certified
and when security policies must be met that vary signifi-
cantly throughout an organisation.

Certifying compiler is a powerful enabling technol-
ogy to meet this challenge. By formally specifying lo-
cal security policies and by annotating an intermediate
form of the code, the whole process is brought under con-
trol. Marginally acceptable functionalities and suspicious
code segments may require later manual inspection, but
the software core can be certified autonomously by the
verifier.

This approach is also general enough to contribute
to other kinds of certification, including interoperability
compliance, reuse policy, maintainability specifications,
etc., which are not examined by the MaliCOTS team at
this time. Once these additional policies are expressed
formally, simply passing the verifier over the annotated
code would enforce them. Even though they are simple
and compact, type annotations are very expressive. Our
R&D on the detection of malicious code confirm that they
have a strong potential for structuring and normalising the

13-6

integration of COTS software into critical systems.
The expected benefits of certifying compilation are ex-

tensive and far-reaching. We hope that this paper will
create enough interest in the technology that international
collaboration can be organised to explore this ambitious
certification paradigm more fully.

References

[1] T. E. E. Archive. Excel 97 Flight to Credits, http:
//www.eeggs.com/items/718.html.

[2] T E. E. Archive. Pinball in Word 97. http :
//www.eeggs.com/items/763.html.

[3] J. Bergeron, M. Debbabi, J. Desharnais, B. Ktari,
M. Salois, and N. Tawbi. Skeleton of a Taxonomy
for Malicious Code. Technical report, DREV, Nov.
1998.

[4] J. Bergeron, M. Debbabi, J. Desharnais, B. Ktari,
M. Salois, N. Tawbi, R. Charpentier, and M. Patry.
Detection of Malicious Code in COTS Software : a
Short Survey. In First International Software
Assurance Certification Conference (ISACC'99),
Washington D.C., Mar. 1999. Section Cl.

[5] J. Bergeron, M. Debbabi, M. M. Erhioui, and
B. Ktari. Static Analysis of Binary Code to Isolate
Malicious Behaviors. In 4th International
Workshop on Enterprise Security, Stanford
University, California, USA, June 1999. IEEE
Computer Society Press.

[6] J. T. Egan. Information Security Threats to
Software Development. In Software Technology
Conference, USA, Apr. 1997.

[7] C. Fräser and D. Hanson. A Retargetable C
Compiler: Design and Implementation.
Addison-Wesley, 1995. ISBN 0-8053-1670-1,
q. http://www.cs.princeton.edu/
software/lcc/.

[8] C. M. Hanrahan. Changing the Culture (COTS vs.
Development). In COTS Software Seminar, Ottawa,
Feb. 1998.

[9] G. Hoglund. A *REAL* NT Rootkit, Patching the
NT Kernel. Phrack Magazine, 9(55), Sept. 1999.

[10] D. Kozen. Efficient Code Certification (ECC).
Technical Report TR98-1661, Cornell University,
Jan. 1998.

[11] P. Lee and G. C. Necula. Cedilla systems inc.
http://www.cedillasysterns.com/.

[12] J. P. McDermott and W. S. Choi. Taxonomy of
Computer Program Security Flaws. ACM
Computing Surveys, 26(3):211-254, Sept. 1994.

[13] G. Morrisett, K. Crary, N. Glew, D. Grossman,
R. Samuels, F. Smith, D. Walker, S. Weirich, and
S. Zdancewic. TALx86: A Realistic Typed
Assembly Language. In ACM SIGPLAN Workshop
on Compiler Support for System Software, May
1999.

[14] G. C. Necula. Proof-Carrying Code. In Proceedings
of the 24th ACM Symposium on Principles of
Programming Languages, pages 1-14, Paris,
France, Jan. 1997. http: //www. cs . emu. edu/
~necula/popl97.ps.gz.

[15] NTSecurity.net. Leap of Faith Now Required for
Real Networks?
http://www.ntsecurity.net/forums/
2cents/news.asp?IDF=173&TB=news,
Nov. 1999.

[16] Quarterdeck. Aids Information Kit Trojan.
http://www.quarterdeck.com/quarc/
00000/00000030 .htm, June 1994.

[17] R. Roy, editor. Strategic Investment Workshop
Proceedings. CRAD, Oct. 1996. Canadian Eyes
Only.

[18] M. Salois and R. Charpentier. Dynamic Detection of
Malicious Code in COTS Sofware. In Commercial
Off-The-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS", Neuilly-sur-Seine
Cedex, France, Apr. 2000. NATO, RTO.

6 Acknowledgements

The authors wish to thank the MaliCOTS collaborators
who contribute to this ambitious research effort. Cur-
rently, 12 Laval University graduate students and 4 pro-
fessors are involved. Special thanks must be addressed to
Dr Mourad Debbabi, who has led this team with compe-
tence and dedication.

13-7

Code Excerpt 2: Corresponding assembly language with annotations in TAL

_estPremier:
LABELTYPE < All[si: Ts , nl: Sint].{ ESP: sptr[S(0)] ({ ESP: sptr[S(0)] B4::B4::sl,

EBP: sptr[S(nl)] si, EAX: B4 })Ax::B4::B4::sl, EBP: sptr[S(nl)] si} >
push ebx
push esi
push edi
enter 8,0
L8:
LABELTYPE < AI1| si: Ts , nl: Sint].{ ESP: sptr[S(0)l B4Au::B4Au::B4Ax::B4Ax::B4Ax::B4Ax:

({ ESP: sptr[S(0)] B4::B4::sl , EBP: sptr[S(nl)l si , EAX: B4 })Ax::B4::B4::sl , EBP:
sptr|S(-8)l B4Au::B4Au::B4Ax::B4Ax::B4Ax::B4Ax::({ ESP: sptr[S(0)] B4::B4::sl, EBP:
sptr|S(nl)] si , EAX: B4 })Ax::B4::B4::sl } >

mov dword ptr (-4)[ebp] ,0
mov dword ptr (-8)[ebp] ,1

mov dword ptr (-4)[ebp] ,0

jmp tapp(L5, < si, nl >

L2:
LABELTYPE < AU[si: Ts , nl: Sii ESP: sptr[S(0)l B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax:

({ ESP: sptrlS(O)] B4::B4::sl , EBP: sptr[S(nl)l si, EAX: B4 })Ax::B4::B4::sl, EBP:
sptr[S(-8)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax::({ ESP: sptr[S(0)] B4::B4::sl , EBP:
sptr[S(nl)] si, EAX: B4 })Ax::B4::B4::sl } >

[edi*4]

mov edi ,dword ptr (20) [!ebp]
mov eax , edi
mov edi ,dword ptr (-4) [ebp]
mov edi ,dword ptr (^premiers

xor edx , edx
div edi
cmp edx ,0

jne tapp(L6, < si, nl >)
L9:
LABELTYPE <A11[si: Ts, nl : Sint].{

({ ESP: sptr[S(0)] B4:: :B4::sl , EBP: s

.{ ESP: sptr[S(0)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax:
, EBP: sptr[S(nl)] si, EAX: B4 })Ax::B4::B4::sl, EBP:

sptr[S(-8)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax::({ ESP: sptr[S(0)l B4::B4::sl , EBP:
sptr[S(nl)] si , EAX: B4 })Ax::B4::B4::sl } >

mov dword ptr (-8)[ebp],0
jmp tappt L4, < si, nl >)
L6:
LABELTYPE < All[si: Ts , nl: Sint].{ ESP: sptr[S(0)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax:

({ ESP: sptr[S(0)] B4::B4::sl, EBP: sptr[S(nl)] si, EAX: B4 })Ax::B4::B4::sl, EBP:
sptr[S(-8)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax::({ ESP: sptrlS(O)] B4::B4::sl , EBP:
sptrlS(nl)] si , EAX: B4 })Ax::B4::B4::sl } >

L3 :
LABELTYPE < All[si: Ts , nl: Sint].{ ESP: sptr[S(0)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax:

({ ESP: sptr|S(0)] B4::B4::sl ,EBP: sptr[S(nl)l si, EAX: B4 })Ax::B4::B4::sl, EBP:
sptr[S(-8)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax::({ ESP: sptr[S(0)] B4::B4::sl, EBP:
sptr[S(nl)] si, EAX: B4 })Ax::B4::B4::sl } >

inc dword ptr (-4) [ebp]
L5:
LABELTYPE < All[si: Ts , nl: Sint].{ ESP: sptr[S(0)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax:

({ ESP: sptr[S(0)] B4::B4::sl , EBP: sptr[S(nl)] si , EAX: B4 })Ax::B4::B4::sl, EBP:
sptr[S(-8)] B4Arw::B4Arw::B4Ax::B4Ax::B4Ax::B4Ax::({ ESP: sptr(S(0)] B4::B4::sl , EBP:
sptr[S(nl)] si , EAX: B4 })Ax::B4::B4::sl } >

mov edi,dword ptr (24) [ebp]
cmp dword ptr (-4)[ebp],edi
jl tapp(L2, < si, nl >)

14-1

Application of COTS Communications Services for Command and Control of
Military Forces

Peter Kerr1 Jeff McCarthy1'
'Head Wireless Systems Group, Communications Division, Defence Science and Technology Organisation, Australian
Department of Defence, United Kingdom

Satellite Communications Department, DERA Defford (on attachment), WORCS WR8 9DU, United Kingdom
Contact: Peter.Kerr@dsto.defence.gov.au

JMCCarthyl@dera.gov.uk

1. Introduction
This paper describes issues related to the use of
commercial communication systems in support of military
command and control. These systems' provide paging
(messaging) and telephony services with global reach
using small (personal), autonomously powered terminals.

New commercial telephony and paging systems offer
ready access to advanced communications technology for
a range of benign and hostile forces including the
military, government agencies, media organisations,
emergency services, insurgents and terrorists. The size,
cost, coverage and ubiquity of all of these systems
combined with the availability of tools targeting internet
application development creates an interesting mix of
threat and opportunity for military organisations.

One of the key advantages offered by the group of new
telecommunications networks is diversity. Diversity of
supply may enable a future adversary to use up to five
systems in order to provide a voice service. For example,
a user could subscribe to voice services based on GSM,
CDMA, Inmarsat, Iridium, Globalstar systems using only
three terminals that could easily fit into a briefcase.
These example systems would operate in five different
frequency bands and all are highly independent of each
other in terms of the supporting network.

This paper is structured in the following way. Section two
describes some high level attributes required of these
commercial systems in order to operate in a military
communication environment. Section three highlights the
differences that would typically exist between the
commercial and military communication markets and
their associated procurement strategies. Section four
provides some examples of COTS solutions for military
applications, which include Command and Control
Warfare (C2W), and the application of COTS for
Australian Defence Force (ADF) communications.

2. Military communication environment
The current thrust in military communications is towards
achieving C4ISR2 dominance in the battlespace. This
dominance will provide commanders with the situational
awareness and understanding that is necessary to achieve
decision superiority at the tactical and operational levels
of warfare.

In order to achieve the aforementioned objectives an
integrated communication system will be required to
provide a high level of connectivity between the various
sensors, weapon systems, and Command and Control
(C2) elements that exist in the battlespace. This leads to
the concept of Network Centric Warfare (NCW), in which
the battlespace consists of a dense grid of sensor and
shooter networks that have been seamlessly integrated
through communications onto a common information grid
as shown in Figure 1.

r
Control Information j

,_.._^.. GrkJ i

Information -*■ ■
Object*

j j

! Sensir Grids
L '

Information i i i

M i
i
i

Information -Wi.
Engagement Grids

Negated
Object!

Figure I: Integration ofC2 in Network Centric Warfare

Current concepts for network centric warfare assume a
communications architecture that is able to support a
broad range of bandwidths over both short and long
distances3. To a large extent this architecture is expected
to depend on broadband wireless communications to
support these information flows, however, the pre-
eminent communication services required for command
and still remain voice and low rate data.

It is the belief of the authors that the voice and low rate
data command and control communication services could
be provided by commercial satellite systems which,
despite their commercial nature, may serve as a catalyst
for future military communications and such concepts as
NCW. The difficult problem for military planners,
however, is tailoring these commercial systems in order to
confer military attributes onto systems that have been
designed for commercial operations. The first step
towards solving this problem is, identifying the desired
military attributes that are expected of information flows

1 The COTS solution in this case may consist of products,
services, or functionality.
2 Command, Control, Communications, Information
Surveillance, and Reconnaissance (C4ISR)

3 Theatres of conflict are becoming increasingly characterised by
greater dispersion and maneuverability of forces over wide
geographic distances that may often extend deep into an
adversary's territory.

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

14-2

for the anticipated military environment. This occurs in
the following section.

2.1 Military communications attributes

Military communication systems are generally expected
to operate in environments that may be intolerable for
commercial system operation. Accordingly, attributes of
the military communication system, or more importantly
the environment it is expected to operate in, have been
used to characterise the system, and also to often
distinguish it from commercial systems. The sustained
growth in commercial telecommunication sector,
however, has seen a steady increase in the demand for
more military oriented attributes to become associated
with commercial services. Although these services still
would not meet the attribute requirements in a stringent
military environment, they still may satisfy requirements
for the less stringent environments that are more likely to
occur4.

The military attributes to be considered for this paper
include, but are not limited to, the following descriptions;

• Quality of Service (QoS)
• Mobility
• Survivability
• Security

Each of these attributes is detailed in the following
sections.
2.1.1 QoS

Quality of service is defined for these systems by the
following characteristics.

• Data transfer rate
• Bit error rate, voice quality
• End-end propagation delay
• Call setup time
• Dropped call rate
• Capacity
• Communications reliability

The combination of these commercial characteristics help
to define how effective a given communication service
will be for C2 applications.

Comparisons to extant military communications systems
such as tactical satellite communications and High
Frequency (HF) show the new systems offer significant
improvement in most of these measures of QoS. This is
primarily due to improved source and channel coding and
in response to increased demands from the commercial
marketplace.

2.1.2 Mobility

Mobility is affected by the size of the terminal, the ability
to establish and maintain communications on the move
and the need for external sources of power. The advent of

small battery powered computer such as PDA (Personal
Data Assistants) and the integration with mobile
communications provides numerous opportunities for
situational awareness and command support systems for
highly mobile forces.

Terminals requiring directional antennas tend to provide
less mobility for small platforms (including troops) due to
the complexity of acquisition and tracking systems.

In modern networks mobility may also include the ability
to roam between networks, ie. Networks have the ability
to mutually authenticate users and allow access. In this
case service mobility may provide diversity and improve
survivability of the service.

2.1.3 Survivability

Service survivability is a primary concern for military
operations. Failure or loss of availability of a
communications system in conflict can have disastrous
consequences and the ability of a system to survive a
range of incidental and deliberate actions is an important
consideration for military planners.

Survivability can be thought of as security of supply and
will be affected by the robustness and resilience of a
system to a range of attacks, including factors such as
congestion. Survivability must include considerations for
conventional and non-conventional attacks on the air
interface and on the supporting infrastructure used by
each system to terminate or deliver traffic.

2.1.4 Security

Security refers to the ability to protect traffic (messages,
voice and data) and traffic flow information. Because of
the inherent mobility offered by most of the systems
considered in this paper protecting traffic flow
information may become highly important (ie. who is
calling who, for how long, how often and from where).

Security is also defined to include protective measures to
prevent deception through masquerading (pretending to
be another user) and spoofing (injection of false
messages).

All of the systems described in this paper claim to be
developing security devices that offer varying degrees of
end to end traffic security. The Inmarsat voice services
all claim to be capable of supporting STU-III encryption.
The newer systems aiming for US government markets
(Iridium, Globalstar and ICO) are all developing Type-1
security products, mainly based on the FNBDT
specification. This development will probably also see
Type-3 and Type-4 encryption devices produced for the
commercial marketplace.

4 Note that the importance of each attribute is expected to vary
according to the type of military scenario being considered.

14-3

3. Comparison of military and commercial
markets
The differences between commercial and military
communication attributes have been identified in the
previous section, however, there still remains the problem
of achieving a solution that will satisfy requirements and
be cost effective in the long term. The type of solution
will depend on the military planner's ability to exploit
features of the commercial market, and also their
willingness to modify these features according to their
own market driven requirements. Furthermore, in order
for this solution to be successful an understanding of the
differences that exist between commercial and military
products and services markets are required.
Some of these differences are outlined as follows;

• Commercial markets tend to be characterised by a
more diverse, and much larger, number of users,
which results in more mature products5 that offer a
wide range of features6.

• The ability of an individual user to discard or upgrade
a product or service is easier than it is for the
military, which requires a "fleet" approach to
procurement and maintaining compatibility between
various upgrades of equipment or services .

• Product or service standards tend to be only valuable
if they are popular, otherwise a defacto standard
occurs. This result is most likely to be associated
with a commercial market.

• Commercial business models tend to adapt more
rapidly to changing technologies than do military
business models, i.e. doctrines.

• The pace of the changing commercial marketplace is
faster than the military market, as evident by the
much shorter life cycles of commercial products and
services in comparison to those of the military .

3.1 Growth in commercial communications market

Rapid consumer uptake of mobile telecommunications,
Figure 2, has resulted in great interest from
telecommunications service providers in most countries of
the world.

New companies focussed on service provision have spun
off from traditional telecommunications companies and

5 A larger and more diverse number of users tends to accelerate
the products "settling in" period.
6 The large diversity in the types of users require a large range of
features in order to meet the majority of requirements for these
users.
7 This would emphasise the importance of backward
compatibility for military customers operating in a commercial
market.
8 Examples of defacto standards include, Windows operating
system and software, and TCP/IP.
9 This is largely due to the "fleet" procurement practice
associated with the military acquisition. This acquisition
approach, however is expected to change under Privately
Funded Initiative (PFI) schemes, which may see a reduction in
military product life cycles.

have experienced rapid growth in market capitalisation1 .
This increasing capitalisation results from rapid growth in
consumer uptake compared to traditional fixed telephony
services. Indeed some market forecasters are now
predicting cellular telephony penetration rates of 300
percent (3 mobile phones per person) compared to 50
percent penetration of fixed services in developed
countries.

\M

200 •

y\
«jf.i s

1390 1331 1332 1333 1934 1395 133i 133? 1939 2000 2001 2002

Figure 2: Growth in Commercial IT

To achieve these penetration rates implies that in the
future the majority of cellular telephones will be used as
embedded communications devices targeting machine to
machine communications as well as for personal
communicators. Furthermore, the rapid technological
development and the enabling R&D investment can no
longer be matched by military organisations and as a
result Defence organisations risk being left behind unless
it leverages the technological development in the
commercial telecommunications sector.

Figure 3 shows one implication for military capability
development if rapid commercial growth is not
recognised as a factor. The axis marked Capability can
represent any of the attributes listed in the previous
section. This rapid advancement in the commercial sector
may lead to an increasing technology deficit using a
traditional military acquisition process. A better approach
may be to adopt commercial technology in a way that
adds military value yet maintain access to the commercial
evolution path.

10 For example, Japan's NTT DoCoMo is now capitalised at
$527 billion dollars compared to $370 billion for its parent
NTT. (Source: Asia's mobile offspring dwarf their parents, The
Australian, 10/2/00, p 21)

14-4

/

AUMIMK}

—--^" ^~\
__——-—" __—— __

Time

Figure 3: Implications of Exponential Growth

3.2 Marketplace procurement strategies

Ultimately, the success of the solution will be determined
by its cost, which will depend on the initial procurement
and upgrading strategies that are available in the military
and commercial marketplaces.

A typical military investment strategy would be to
provide significant up front capital investment in a
product or service, as opposed to leasing commercial
products or services at lower initial costs as shown in
Figure 4.

Cost$ - Leasing approach

Capital investment approach

Upgrade

At this point the
capital investment

becomes favourable.

Time

Figure 4 Leased versus capital investment strategies

Over time, the cost of leasing may eventually become
higher than the dedicated military investment approach,
however, access to the latest technologies and services,
has been maintained over the entire period".

4. Application of COTS solutions for
military communications
The challenge for military planners and capability
development organisations is to identify those operational

Note that "break even" point will exist between the two
approaches. Further note that if a customised solution were to be
considered then the "serations" associated with the leasing
strategy may begin to grow as the customised product begins to
significantly deviate from the commercial product.

requirements that need specialised military
communication services, and which can use military
enhanced commercial services or unmodified services to
meet these requirements.

They may also have to deal with the potential use by an
adversary of the same advanced technology and devise
methods of maintaining information superiority.

Some examples highlighting the application of COTS
solutions for military communications are given in the
following section.

4.1 Command and Control Warfare

One of the key challenges for future Command and
Control Warfare (C2W), involving commercial
communications systems, revolves around the ability to
target particular users or groups of users. In many cases,
both sides of a conflict will be using the same commercial
communications networks. This will also be true of
independent observers of conflict such as the UN, aid
agencies and the media. The use of traditional means of
C2W (degradation and denial) could well be
counterproductive in complex conflicts

The means effective C2W strategies will allow a force to
target individual subscribers or groups of subscribers.
This is not a trivial task as all of these systems employ
complex protocols that randomly allocate network
resources to maximise capacity. Military forces need to
be careful that C2W strategies do not force an adversary
into using a C2 system that removes any advantage.

Area denial strategies based on dumb jammers may be
effective, especially in combination with the use of smart
antennas to enable friendly forces to overcome the effect
of denial. Small, battery powered jamming terminals
could be effective for this function but would have limited
endurance for control of large areas. Airborne systems
would be more effective and could support operations for
longer periods of time from a reasonable stand-off
distance using a directive antenna.

Other techniques for C2W could involve use of
capabilities designed into the networks for fraud
prevention and legal intercept requirements.

Diplomatic efforts to convince operators to enforce
prioritisation may provide another simple and effective
selection procedure. Most of the new commercial
communications systems provide prioritisation and
preemption capabilities although standard commercial
practice is to assign almost all users to the same priority
level. Operators would generally be hesitant to use
prioritisation and preemption due to the perception that
such use would adversely affect profits.

Similarly, the systems based on GSM maintain white,
grey and black list of subscriber equipment. These lists
are used by the commercial operators to manage fraud,

14-5

eg. the use of stolen phones or network access by a
customer who does not pay the bill.

The white list contains details of subscribers who are
entitled to have unrestricted access to the network. The
grey list contains subscribers that may be of concern and
use of the network by these subscribers generates an
alarm in the network operations centre. The black list
contains subscribers who are barred from using the
network. These subscriber list can be readily changed by
the operator and in a conflict could be used to warn of
prevent network access by subscribers from a particular
country or from a particular group. Operators may well
seek compensation to allow such network management
systems to be used as a means of C2W in a conflict.

4.2 COTS Communications in the ADF
While many nations are endeavouring to integrate COTS
communications solutions into their military
communication strategies, Australia has, through
necessity , a considerable legacy in this area.

The Australian Defence Force currently employs a wide
range of commercial communications technologies for the
command and control of deployed forces. These services
include leased capacity from civilian (Optus) and military
(LEASAT) satellites to support broadband strategic,
broadband tactical, and tactical mobile communications
networks.

advanced adversaries to significantly improve their
military capability.

The challenge is to ensure that these systems do not
deliver an information advantage that could further
complicate the range of military conflicts now
experienced.

Similarly, as evidenced in Kosovo and East Timor, media
and aid organisations using new communications
technology have unprecedented mobility and this in turn
could challenge military efforts in PSYCHOPS. Means
of controlling benign parties such as media and aid
agencies need to be devised. The danger is that some
C2W techniques may inadvertently deny or degrade the
communications of benign parties present in conflict
scenarios and by doing so the results could well be
counterproductive for the military effort.

The paper provides a brief summary of some issue related
to military uptake of commercial communications
systems. The focus has been on low data rate wireless
technologies that might enable global command and
control of national or multilateral forces. Some techniques
for effective C2W against these systems based on inherent
network capabilities and on external capabilities have
been proposed.

Australia also makes heavy use of Inmarsat and Intelsat
services for off-shore deployments using commercial
services with military encryption.

Further investigations into the potential application of
commercial communication services are occurring
through trials and evaluations in which the Defence
Science and Technology Organisation (DSTO)
participates in.

Current DSTO research programs are investigating the
potential use of GSM, satellite PCS, broadcast
technologies, ATM and IP communications products for
tactical use.

Many of these systems were successfully deployed during
the recent multilateral peace enforcement mission in East
Timor.

5. Conclusion
New commercial satellite communications systems will
be used for command and control in military conflicts of
the future. The precedent was set in the Gulf war, when a
large portion of military communications traffic was
carried by commercial systems such as Inmarsat and
Intelsat, and has followed in almost every major conflict
since.

The advent of a number of systems offering new services
and smaller, lower powered terminals may well create
opportunities for well organised but less technically

KN2-1

Confidently Integrating COTS Software Under Worst Case
Assumptions

Jeffrey Voas
Reliable Software Technologies

21351 Ridgetop Circle, Suite 400
Dulles, VA 20166, USA

jmvoas@rstcorp.com
Tel: 703.404.9293
Fax: 703.404.9295

Abstract

Most systems today are composed of hardware
components, COTS software, and custom
(bespoke) software. In terms of the software, the
proportion of COTS software in a typical system
is beginning to overtake the percentage of custom
software. When a system fails, it may well be the
COTS software that caused the system to fail
given the well-publicized defect rates for acquired
software. This paper describes a methodology for
predicting the impact on system failure rates that a
particular Commercial-Off-The-Shelf (COTS)
software component might have before the
component is embedded into the system.

1 Introduction

As software quality and information security
becomes an increasingly well-publicized concern,
the need for techniques that can accurately predict
future failures and detect deficiencies grows.
Voices from both industry and government are
echoing this.

As an example, consider the comments of the US
Department of Defense's CIO, Mr. Money, (June
17, 1999 issue of Federal Computer Week):

"The quality of software we are getting
today is crap. Vendors are not building
quality in. We are finding holes in it."

Gary Beach, publisher of CIO Magazine, wrote on
April 1, 1999:

"Are you tired of software vendors
sending you service packs to fix bugs that

should have been stamped out earlier?
Off-the-shelf commercial software isn 't
good enough anymore. Service packs,
indeed! Many CIOs I've talked to call
them disservice packs."

In my opinion, the underlying tension causing
such comments to be made is directly related to
the average defect density for all commercial
software packages. According to Les Hatton.

"The industry standard for good
commercial software is around 6 defects
per KLOC in an overall range of around
6-30 defects per KLOC."

Surprisingly, this rate has held fairly constant for
the last two decades, regardless of the shift to
object-oriented technology, automated debuggers,
better test tools, stronger type safety in languages
such as JAVA and ADA, etc.

If this range is correct, and given that COTS
software is delivered in executable format (thus
disallowing consumers to apply white-box
techniques to assess for themselves the quality of
the software) to the end users and system
integrators, can the systems that rely on COTS
software ever be trusted?

I will argue that the answer to this dilemma is
"sometimes." And I will argue that even if the
defect rate were higher than 30. While this is
counterintuitive, the reason is that not all defects
cause failure modes that are intolerable to the
system.

The key then is to be able to predict, on a system-
by-system basis, how well a system will be able to

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

KN2-2

tolerate COTS failures. This technique can also
reveal what COTS failure modes the system will
be able to tolerate.

To do so we employ a technique called Interface
Propagation Analysis (IPA). IPA is a fault
injection-based technique that simulates
component and subsystem failures.

Our approach is simple. Start by simulating
COTS component failures during system
execution and observe how they affect the full
system. If the effect is negligible, then it is fair to
assume that if the component truly fails, the
system will be able to tolerate real failures. If the
impact is large, then the component needs
additional scrutiny. The bottom line is that we do
not care how poorly subsystems behave as long as
their behaviors do not jeopardize the integrity of
the full system.

As examples of the types of component failures
that we might wish to simulate, consider events
such as the COTS component hanging or failing
to return a result to the system. Or it might be that
the COTS component requires more memory than
available and the component aborts.

IPA is normally applied once the software system
is completed, thus it is a late life-cycle approach.
However the analysis can still be applied before
COTS components are integrated into the system
provided that there exists a specification for what
the component does such that we can generate
failure modes from that specification.
(Components that do not yet exist are termed
"phantom components").

2 COTS and National Security

COTS systems cause great dependability fears.
Probably nowhere is the concern greater than to
information system security. The US Government
considers the reliance of our military and national
information infrastructure on public systems (such
as the Internet and the telephone system) as
severely compromising to national security.
Currently, the US Government is spending
billions of dollars in search of solutions to this
vulnerability [1].

Biological systems use genetic diversity
to enhance their survival. Each individual of a
species is slightly different from another
individual. The diseases that one individual is

susceptible to may not damage another. This
diversity increases the probability that a species
will not be completely wiped out when epidemics
occur. In information systems, however, we see
the reverse trend occurring. We see less and less
diversity being available, particularly in operating
systems, due to the mainstream cry for standards
and interoperability. In operating systems, we are
converging towards two main platforms: UNIX
and Windows. Operating systems are probably
the most important of all COTS components
today. Further, we are converging toward a
handful of Web browsers, and this number, too, is
likely to get smaller in the coming years. Because
of this lack of diversity, we are all susceptible to
the same types of attacks and vulnerabilities. And
because our operating systems are off-the-shelf,
we may also be
deficient in knowing everything going on in them
and hence taking the appropriate action to protect
ourselves.

The issue here is the covert channel
problem. An executable component (other than
the OS) may be making calls to the operating
system that it is not supposed (and known) to. To
determine whether this is happening requires a
watchdog utility that has access to operating
system level functionality. Tracking global
environmental events requires the ability to keep
track of the entire system. For example, it will
probably be useful to monitor DeviceloControl
function calls. Not only will such calls need to be
tracked, but isolating exactly who (or what
component) is doing the calling is also required.
This approach amounts to trying to wrap the
operating system in order to see every request that
enters or leaves the operating system. The
downside to this approach is that it is both
expensive to develop the utility, and expensive to
execute it when the operating system is deployed.
Also, this scheme would need to be implemented
for each unique operating system.

3 Assessing COTS Software
Failure Impacts

The first step in our approach is to determine how
the system reacts to corrupted information being
passed to it from COTS software functions. After
all, if a COTS failure does not negatively impact
the system, then concern over the dependability of
the COTS component may be unwarranted.

KN2-3

As mentioned, the technique used here is
Interface Propagation Analysis (IPA). The
process of performing IPA is quite simple. The
interfaces that are responsible for sending
information out of a component to the system are
first isolated. Random data generators are placed
at those interfaces. As information exits a
component, the generators grab the information
and corrupt (modify) it. That modified
information is then handed over to the system in
place of the original information. This provides
an analysis of how badly the system behaves
when artificially corrupted information is injected
into the state of the system.

One might wonder why we go through
such an elaborate system to see how component
failures affect the system. After all, why not just
embed the components in and perform system-
level testing? System-level testing will, in theory,
determine this if component failures are frequent
or the amount of system level testing is enormous.
But if component failures are rare and the amount
of system-level testing is limited, it is unlikely
that system-level testing will provide any insight.
So by forcing artificial component failures to
occur, we can more quickly assess the tolerance of
the system, even though we must always caveat
our results with the realization that our injected
failures were artificial.

IPA is composed of two software fault injection
algorithms: "Propagation From" (PF) and
"Propagation Across" (PA). PF corrupts the data
exiting a real component (or phantom component)
and observes what it does to the remainder of the
system (i.e., what type of system failures ensue, if
any). PF can also observe whether other
subsystems fail and how. Thus, PF is an
advanced testing technique that provides the raw
information needed to measure the semantic
interactions between components in order to
measure their tolerance to one another.

PA corrupts the data entering a component. This
process simulates the failure of system
components that feed information into the
component in order to see how it reacts. These
simulated failures mimic human operator errors,
failures from hardware devices, or failures from
other software subsystems. After the component
under analysis is forced to receive corrupt input,
PA observes whether the component chokes on
the bad data and fails. Note that PA is very
similar to PF. The only difference is scale: PA is

focused on standalone components and PF is
focused on component/system interactions.

In summary, the main applications of IPA are: (1)
making "buy" vs. "build" decisions, (2)
recommending system redesigns when certain
COTS failure modes have been demonstrated to
be intolerable, and (3) providing intelligent
heuristics for allocating testing resources. IPA
provides information on how systems will tolerate
the most detrimental failure modes of commercial
software packages, hardware subsystems, and
human operator errors. Here, for brevity, we have
only focused on IPA simulating COTS component
failures. (Further information on IPA can be
found in [3,4,5].) By determining that even the
worst failures from a COTS package are tolerable,
the package can become a viable candidate for
integration into the system even if it is relatively
high in defects.

4 Summary

This paper has recommended methods for
assessing whether a system can tolerate failures
originating from COTS software subsystems.
Because COTS software is often failure-prone,
"defensive system designing" is prudent, and this
paper has proposed one method that partially
addresses this problem.

References

[1] General J. J. Sheehan. A commander-in-
chiefs view of rear-area, home-front
vulnerabilities and support options. In
Proceedings of the Fifth Info War Con,
September 1996.

[2] J. Voas. Error Propagation Analysis for
COTS Systems. IEEE Computing and
Control Engineering Journal, 8(6):269-272,
December 1997.

[3] J. Voas, F. Charron, G. McGraw, K. Miller
& M. Friedman. "Predicting How Badly
'Good' Software Can Behave". IEEE
Software, 14 (4): 73-83, July, 1997

[4] J. Voas. "Certifying Off-the-Shelf Software
Components," IEEE Software, 31 (6): 53-
59, June, 1998.

KN2-4

[5] A. Ghosh & J. Voas. "Innoculating
Software for Survivability," Communications of
the ACM, 42 (7): 38-44, July, 1999.

15-1

The Convergence of Military and Civil Approaches to Information Security?
(February 2000)

Robert Rowlingson
(Principal Scientist)

Defence and Evaluation Research Agency,
Woodward Building, DERA Malvern

St Andrews Road, Malvern
Worcs., WR14 3PS.UK

Introduction
The motivation for this paper is the about-turn that
defence computing went through with open systems
interconnection (OSI) and Ada. Defence specific
products and bespoke development were discarded as the
cost-benefits of mainstream COTS systems became far
superior. This paper shows that a similar situation is
developing in information security (infosec) and
suggests that the defence approach to security may need
to adapt if it is to benefit from the rapidly growing
commercial market.

Civil Trends in Information Security
In recent years, the civil market for information security
technologies has grown dramatically. The increasing
requirement for information security arises from the
need to mitigate the risks involved with:

• E- commerce: use of the internet both for business-
to-business (B2B) and business-to-consumer (B2C)
sales;

• Mobility: support for tele-working and mobile
users;

• Extranets: the need to establish rich inter-
connectivity with business partners (as well as
customers and suppliers);

• Knowledge management: the increasing
recognition of the importance and value of
information in the 'knowledge economy'.

These drivers are forcing IT departments to develop and
implement security policies that go beyond the boundary
of the company. Internal systems can no longer be
isolated from the outside world. Critical sources of
company information such as the data warehouse must
be made available to staff, partners, customers, potential
customers and collaborators [1]. The pressure is on all
companies to exploit the internet and to accept the risk
that connecting to a public network inevitably carries.
Lack of security and trust are the greatest inhibitors of
the commercial use of the internet [2, 3]. Everyone
accepts the need to practice 'safe hex'!

Anecdotal evidence of the relative importance of various
infosec issues is indicated by the 'Top 5 Information
Security Concerns for Corporations in 1999' [4].

1) Ability of current infrastructure to support e-
commerce activities;

2) Implementing remote access without compromising
the security of the corporate network;

3) 'Insider' attacks against corporate systems;
4) The extension of networks to support business

partner connections;
5) Encryption and key management technology for

customer facing systems.

Consequently companies are developing security
policies; purchasing products such as firewalls and
intrusion detection systems; procuring services such as
penetration testing and security auditing; and training
their staff in information security. In short, they are
doing many of the things that defence has considered as
essential for many years. This is driving massive growth
in the information security market - in 2001 the internet
security business is predicted to be worth $7bn with an
annual growth rate in the whole information security
industry of 65% [5].

Defence Trends and Information Security
The trend towards more joint and coalition operations
means the ability to federate systems is essential. There
is also a growing need to work with Non-Governmental
Organisations as well as within the Government Secure
Intranet (GSI). The Smart Procurement Initiative (SPI)
has highlighted the need to use electronic commerce and
for close partnerships with industry. The doctrine of
'information superiority' has brought the role of
information in military operations to the fore. All four
commercial drivers: e-commerce, mobility, extranets and
knowledge management, are thus also applicable to the
defence sphere. There is aprima facie case that the civil
approach to security is becoming increasingly relevant to
defence.

Comparing Defence and Civil Infosec
It would be comforting to believe that the massive civil
investment in infosec and developments in areas like
cryptography mean effective security will become easier.
However some commentators believe that it is likely to
get worse before it gets better. It is safe to assume that
all systems can be successfully attacked in some way -
probably in a way unexpected by the designers and with
unexpected consequences. Defenders have to defend
every vulnerability, whereas attackers have only to find
one weak spot. Complex software will always have bugs

© British Crown Copyright 2000. Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO.

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

15-2

and features that pre-dispose it to security vulnerabilities.
Security is dynamic and both risks and counter-measures
are evolving rapidly. What does this mean for the
convergence of military and civil approaches to infosec?

The military's ability to exploit the market will depend
on whether the nature and level of protection it requires
for information will be supportable using civil products
and services. The requirements will depend on the
perceived risks that security will be compromised, and
the impact that a compromise has on the organisation's
mission - in the case of defence to defend, in the case of
industry to make profits. In both cases there is a trade-off
between the protection of information and the sharing of
information. Sharing is deemed to have a benefit;
protection a cost. Thus at the heart of information
security is a cost-benefit analysis which we can
understand using four basic components of information
security:

• Information is subject to various forms of potential
compromise. A compromise is a breakdown in
information security. It occurs whenever some
property of information that needs to be preserved,
is lost; examples include loss of confidentiality,
integrity, availability, utility and authenticity;

• There is a risk of a given loss taking place. A risk is
the chance that a potential compromise will actually
occur;

• A loss will have some impact on the organisation.
Impact is the cost to the organisation caused by a
security compromise;

• An organisation can protect its information from
compromise, by controlling the ways it shares
information, with the support of carefully selected
security controls known as counter-measures. A
counter-measure is any action taken to reduce the
risk, or potential impact of, an information security
compromise.

It is the objective of information security to apply
appropriate, cost-effective, counter-measures in order to
reduce, the risk and impact of compromise, without
undue effect on system usability. There is no universal
agreement over the exact meanings of many terms in
information security, however these components can
support a discussion of how the defence requirements
compare with the civil sector.

Compromise
The principal security concern of defence is to preserve
the confidentiality of its information. It is now clear that
these concerns are shared by industry which is giving a
much higher priority to confidentiality than it has in the
past. Companies in the US are estimated to be losing
$250Bn annually to information thieves. Over a 17
month period some 1100 documented incidents of
intellectual property theft were identified worth an
estimated $44Bn [5, 6]. Trusted insiders are widely

acknowledged as the single greatest threat to corporate
information.

Risk
In providing a secure system, it is imperative that
security measures should be designed to counter the
most likely and most damaging causes of compromise.
These can be characterised by [7]:

• accidents caused by the legitimate users of the
system;

• the actions of a traitor, i.e. a legitimate user
betraying the trust placed in them;

• trojan horse software unwittingly invoked by a
legitimate user, thereby allowing illegal users
access to the legitimate business processes;

• someone exploiting an implementation flaw or
weakness in the security system;

• legitimate users failing to follow security
operating procedures.

Risk assessment is the starting point for all security
decisions and goes hand-in-hand with assessment of the
potential impact. However we cannot precisely quantify
risk - it is a probability which depends on many
unknowns and unknowables. Formal quantitative risk
assessment is prone to errors.

Companies are good at assessing and taking business
risks. They make money by accepting and managing
risks better then their competitors and this includes
infosec risks. They take a pragmatic approach to the
cost-benefit analysis, preferring skilled judgement to risk
minimisation or analytical risk assessment. They are
unlikely to favour the rigorous, quantitative approach
used in defence.

In business, IT is purchased first and foremost for a
given business purpose; security is then retrofitted to the
system. In contrast the defence approach to security is
based on a prescribed set of engineering principles; an
analysis of how close a given system conforms to those
principles and an evaluated assurance level. These
principles tacitly assume a 'clean sheet' that can be
designed from the ground up with security in mind.
'Security by design' is acknowledged as the best way to
achieve security but as an approach it is fundamentally
different to the civil sector.

The defence approach also contains a 'standard' attitude
to risk. This has the benefit of consistency and
accountability. However, the use of a pre-defined set of
rules, enforced at system installation, is a significant
restraint on flexibility and responsiveness by system
owners. In the worst case, users may feel that security is
not their problem, as it has already been addressed by a
separate group of staff responsible for accreditation. As
there is no guarantee that security adopted at the
beginning of a project is suitable at a later date, security
must be considered throughout the lifetime of a system.

© British Crown Copyright 2000. Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO.

15-3

The causes of compromise described above are made up
of threats and vulnerabilities.

Threat
A threat is an action or event that can cause an
information compromise. There are five broad classes of
threat agents - criminals, terrorists, employees, other
outsiders (e.g. former employees) and competitors (the
enemy). Threat agents are either internal or external to
an organisation; structured (i.e. organised in some way)
or unstructured. To pose a threat, someone must possess
the Skills, Knowledge, Resources, Authority and
Motives (SKRAM) necessary to cause a compromise [8].

An area where the threat (or SKRAM) is increasing
rapidly is hacking. Hacking is seen as 'cool' and in some
circumstances is profitable. It is also becoming more
widespread, as hacking tools are published on the web
and many people start to experiment with them.
However most of these 'script kiddies' are easy to
repulse by competent system managers. The tools they
naively employ are also useful to system managers to
test and protect their networks. For example,
LOphtCrack1 is a password guesser. One NT
administrator found 85% of his office's passwords in 20
minutes, all but two in a day [9]. It can and should be
used by defenders to check that users are choosing
passwords which are difficult to guess. Another common
hacking technique is known as packet sniffing - the
providers of LOphtCrack have also published a packet
sniffer detector (a stealth packet sniffer is also
available!). Hackers may be threats but their techniques
often provide potentially useful countermeasures.

Vulnerabilities
A vulnerability is an inherent weakness in a system that
may allow a threat to cause an information compromise.
The critical issue for defence is that if it uses COTS
software, it exposes itself to vulnerabilities that are well-
known to potential attackers. The alternative approach is
to develop non-COTS software and rely on 'security by
obscurity', in other words to assume that as mainstream
users and hackers do not use the software they cannot
find any vulnerabilities to exploit. Indeed, many
vulnerabilities are found in COTS technologies because
users find bugs and exploitable 'features', and many
people (good and bad) look for such vulnerabilities.

COTS software is potentially more secure than
'obscured' software in three ways. Firstly, the
vulnerabilities that are easiest to find can be found and
fixed; secondly, there is a short window of opportunity
for an attacker to target a given system because fixes are
released quickly and widely notified; and lastly, the
chance that a system has unknowingly been
compromised is less, as someone else using the same

system may discover it first). To make this approach
work, system vulnerabilities need to be monitored and
disseminated - the role of a CERT (Computer
Emergency Response Team) and patches and work-
arounds must be quickly applied - the role of a system
manager. Thus the COTS approach applies throughout
the lifecycle and is less 'all or nothing' than a system
that has some dependency on security by obscurity.

If the security of a system depends on it's obscurity then
if that obscurity is ever compromised, and we may not
actually know if it is, all bets are off. Further problems
arise as such systems are generally not designed for
rapid patching and updates, as with COTS. In some
cases if a vulnerability was ever found, it would be very
difficult to correct in the field. Examples of the failure of
'security by obscurity' in the civil sector are
commonplace:

• The U.S. digital cellular companies created then
own proprietary cryptography; some algorithms
were made public without their consent [10]; once
public they were broken. Now the industry is
considering public algorithms to replace them;

• The security of Digital Versatile Disks (DVD) relies
on the confidentiality of the code that performs the
decryption in a DVD player. However, unencrypted
code was found and this enabled the system to be
reverse-engineered and compromised2. The software
to do this was then posted on the web [11],

• Microsoft introduced Point-to-Point Tunnelling
protocol (PPTP) as its Virtual Private Network
(VPN) technology (competing with the internet
standard IPSEC that has gone through rigorous
public review). Microsoft fielded PPTP in Windows
NT and 95, and published their protocols. In 1998
various flaws were published and Microsoft quickly
posted a series of fixes (which were evaluated and
found improved, but still flawed) [10].

These events also suggest that if security vulnerabilities
are found in the COTS it procures then defence has a
good chance of having them corrected by suppliers.
(This is completely different from the case of
functionality, where defence has very little influence
over suppliers). However it is necessary to make the
vulnerability known to the supplier and this would
clearly involve some risk. Indeed this could be
compounded by the fact that many suppliers appear to
respond much more quickly to flaws that are in the
public domain rather than those that have been
communicated privately. It can seriously tamish their
reputation if they are seen to respond slowly to a security
problem in a security product.

1 The word LOphtCrack incorporates several techniques
for choosing difficult-to-guess passwords.

2 The key size had been limited by US export law but a
brute force attack was not used, nor was any encryption
algorithm broken - failure was due to a reliance on the
confidentiality of an algorithm.

© British Crown Copyright 2000. Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO.

15-4

Impact
Defence has a very effective and well-developed system
for evaluating impact - protective-marking. The
classification of a document is a direct indication of the
impact its loss of confidentiality would have on national
defence. However the civil sector does not see that a
detailed and rigorous multi-level classification scheme
can be cost-effective. There is rarely a clear business
case to undertake and maintain an information
classification regime and the necessary vetting of staff.
Furthermore, classification is of little use in
understanding the impact of a loss of integrity or
availability [12]. This is despite the benefits that such an
approach offers, such as a better understanding of where
to invest security resources and a visible reminder to
staff to take appropriate care. Defence cannot look to
COTS for support for multi-level document labelling
schemes although simple support for 'need-to-know'
type labels such as commercial-in-confidence, may be of
interest to the civil sector and thereby provide a market
for an appropriate COTS product.

Countermeasures
Thanks to the game of 'catch-up' between infosec
defence and attack, counter-measure technology is a fast-
moving field. The size of the market, and more
importantly, the size of the e-business market it enables,
suggests that it will continue to evolve rapidly towards
the corporate mainstream. Much of it is highly relevant
to defence. This section illustrates the proliferation of
COTS technologies [13, 14]:

Biometrics
Biometrics refers to the ability of an attribute like a
fingerprint to uniquely identify an individual.
Techniques such as voice identification; fingerprints;
facial, retina and iris recognition; and hand geometry are
being pursued. High demand and improving technology
is causing a rapid drop in price for usable biometric
technologies.

Encryption
Encryption technology is a rapidly developing area in the
civil sector which, until the publication of the concept of
public key cryptography in 1976 (Diffie-Hellman) was
almost the sole preserve of the defence sector [15].
Nowadays, innovative products are emerging in
applications such as secure email, e-commerce, internet
banking, copyright protection in digital media, cellular
telephony and the like. These include:

• Certigrams - 2-dimensional representations of
encrypted information;

• Hushmail (a browser-based email system like
Hotmail but where the email on the mail server and
all interactions with it are encrypted);

• Elliptic curve cryptography - a form of public key
cryptography with a smaller key size and faster
implementations than other public key algorithms.

In the past, defence has focussed on providing strong
encryption algorithms to prevent enemy decoding. The
civil sector recognises that a secure system is only as
secure as its weakest link. Most threats will not attempt
to crack encryption using code-breaking - it is far easier
to steal keys or bribe people. The critical civil sector
requirement is therefore for secure cryptosystems. The
civil sector is also developing strong algorithms such as
the Advanced Encryption Standard (AES). This is an
open competition and civil cryptographers are attempting
to find flaws in the competitors.

Encryption is becoming something of a 'silver bullet' in
the civil sector. Despite its obvious potential and diverse
applicability there remain many drawbacks:

• A perfect cryptosystem is no more achievable than
perfect security;

• Encrypting everything everywhere is complex and
costly;

• There are a variety of disparate algorithms,
approaches and products;

• Encryption does little to counter trojan horse
attacks;

• An attacker can use encryption to hide stolen
information, malicious code, etc.;

• Encryption still requires identification for secure
transactions;

• Encryption is a complex application - users can
easily make serious mistakes.

The most worrying aspect of the widespread use of
cryptography is that it may actually give users, and
system owners, a false sense of security.

Snoopware
Snoopware is a colloquialism for software which
monitors user behaviour and communciations3 such as
email; keystrokes; time and date of activities; name of
program being used etc.. Snoopware is the internal
analogue of intrusion detection - it has the potential to
detect traitors and spot how accidental compromises
occur.

Content Checking
Content checkers analyse information or 'content'
passing in or out of a system. For example, outbound
checks for words in email which suggest information is
classified; inbound checks to block executables.
Companies are using this software extensively to protect
against their liability for the actions of their employees,
who might send libellous or discriminatory emails. The
difficulty is that little information is sent in plain ASCII
text and checkers need to decompose attachments in
compressed, encrypted or obscure formats, to apply a
content policy to as much data as possible.

Clearly there are many privacy issues concerning the
use of such software.

© British Crown Copyright 2000. Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO.

15-5

Firewalls
Firewalls are the mainstay of network security. They
form the first line of defence against network based
attack. The main purpose of a firewall is to police a
network access policy by examining and evaluating
network traffic as it passes between networks. This
strategic position means that as well as keeping the bad
guys out they also enable the right connections to be
made, for example to support the secure mediation of e-
commerce. Consequently they are designed to let
information through as much as to keep it out, acting like
traffic lights to the various network protocols.

Vulnerability Scanners
Vulnerability scanners are tools that test a system against
a database of known vulnerabilities. They have emerged
as a key hacker tool but are also important for a sound
defence. Several tools have initially been published on
the web and then commercialised. Recently they have
been used to probe internet systems, such as web and
mail servers, to find whether they were running software
with known security vulnerabilities. The Internet
Auditing Project scanned almost every internet server
and found several hundred thousand vulnerabilities. [16]

Intrusion Detection
Intrusion detection tools monitor access, attempted
access and other interactions within and between
networks. Basically they attempt to identify possible
malicious behaviour, for example: repeated password
guessing or non-standard attempts to create new users.
They may monitor network traffic in real-time, or
analyse audit logs off-line. Most products on the market
look for specific patterns in user activity and tend to be
inflexible. Some systems are now attempting to use
heuristics and artificial intelligence techniques to
improve detection rates and reduce false alarms.

Malware Protection
Malware is the generic name for harmful software such
as viruses and trojan horses. Most anti-virus tools work
by recognising 'signatures' of known viruses and require
regular updates of new virus signatures. This means they
may overlook new viruses, as the 'Melissa' outbreak
demonstrated. Other malware protection software
includes integrity checkers, which check that the system
configuration has not been altered, and release sanctions,
which ensure information is only released with user
approval.

Information Security Management
Technology per se is of little use in information security
if not backed up by policies and well-managed
processes. Several civil standards are relevant:

• A Code of Practice for Information Security
Management (BS7799-1:1999) [17] - aims to
provide common, best practice guidance to enable
an organisation to implement appropriate
information security, and to facilitate inter-company

trading by providing confidence in the security of
shared information. It is an ISO 9001-like system in
that it requires an organisation to 'say' what it does
and 'show' that it does it, without specifying what
the actual processes should be;

• System Security Engineering Capability Maturity
Model (CMM) from SEI - a variant of the well-
known software engineering CMM;

• Guidelines for the Management of IT security
(GMITS ISO/IEC 13335) - provides a basis for an
organisation to develop and enhance its security
architecture and a means to establish commonality
between organisations.

What appears to be missing is some way to allow one
organisation to 'know' how secure another one actually
is. This might be met by a composable security system
description. In the world of inter-connected e-business
this is a gaping hole.

Conclusions
In areas of IT where defence and civil sector
requirements have a significant degree of overlap,
defence has been persuaded that in order to keep pace
with technology developments it must adopt the civil
sector approach. This paper has highlighted the trends
demonstrating that information security is heading in this
direction. This implies that COTS technologies will
become the default for many defence information
security applications and that the defence and civil sector
approaches to information security will converge. Note
that COTS are not universal solutions. The highest
classified information required in defence has no
counterparts in the civil sector and there is unlikely to be
any alternative to restricting such information to paper or
isolated, physically-protected systems. However, there
are a number of difficult issues which defence now
faces:

• How to manage risk more pragmatically: Pragmatic
risk management requires the application of
judgement. This can be supported by a coherent
traceable argument from high level policy, through
individual project requirements and on to design,
implementation and operation. Since perfect security
is impossible there is always a degree of residual
risk. The current approach does not manage it well
because, unlike the civil sector, it does not accept it
exists.

• How to reduce its dependence on security by
obscurity: Defence systems are being developed that
have a significant element of reliance on security by
obscurity. However, if the obscurity is ever
compromised (and it may not be clear if it has) an
attacker may find the one vulnerability required.
Attempting to fix a significant vulnerability in the
field may be totally impractical.

© British Crown Copyright 2000. Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO.

15-6

• How to gain confidence in the software it procures
without a large formal assurance overhead: The
concept of assurance is not widely accepted in the
civil sector . Evaluations do not generally find
common vulnerabilities, such as buffer overflows
[18] and denial of service attacks [19]. Vendors are
not prepared to jeopardise time-to-market for
assurance, given their customers do not request it.
There is a limited range of evaluated products.
Frequently, only parts of the security functionality
are assured. Until these drawbacks are overcome,
assurance is unlikely to have a major impact in the
market. Governments may need to re-define their
approach, for example by recognising that mass use
of software confers a certain degree of assurance
and that open source software allows the requisite
code inspection.

• How to manage security on the timescales of the
civil sector: Information security is not static. If a
system is 'secure' today it probably isn't tomorrow.
It is dangerous to assume that a system, and its
mode of operation, can be accredited at installation
time as 'secure'. The civil view is that systems must
always be considered insecure and that continual
monitoring and rapid patching is essential.

• How to address document marking: The civil sector
does not currently see a business case for the use of
multi-level security and related document labelling.
It is highly unlikely that COTS products will emerge
to fulfil defence requirements. There are several
alternatives: make labelling software available as a
toolkit to promote its integration into defence
systems; mandate a government labelling product;
use encryption to manage security levels throughout
its systems; or rely on informal separation and user
conformance.

• How to manage secure systems federation: The
internet demonstrates the effectiveness of a
distributed, rather than a centralised, approach to
systems federation. Currently this works for a
simple trust model, namely trust nothing that you do
not control. There is likely to be a requirement for
techniques to manage more complex systems
federation and secure service mediation for e-
business.

In some of these aspects, such as the protection of
information at the highest levels and the use of
protectively-marked documents, it is unlikely that
defence will find commercial solutions. In other areas,
such as assurance, careful consideration is required to
manage the mismatch between the defence and civil

approaches. Finally, in its approach to issues such as risk
assessment, static security, and security by obscurity,
there are no technical reasons why the civil approach
could not be used.

References
[I] Turning Security On Its Head, The Forrester Report
VI3 (2), January 1999
[2] Nov 12 1999: A joint survey from @dtech and Talk
City "The World Wide Internet Opinion Survey", found
83 percent of respondents had made an impulse buy
online... and 45 percent cited security as the main
deterrent.
[3] Security Portal Nov 15*,
http ://www. securityportal.com
[4] Bellcore/Globallntegrity's SecureComm 98
conference
[5] Computer Security Issues and Trends, 1999 CSI/FBI
Computer Crime and Security Survey.
[6] Who's stealing your information? Dorothy E.
Denning,
http://www.mfosecuritymag.com/apr99/cover.htm
[7] Interim Security Domain Modelling Guidance,
Version 2.1, October 1999, DERA/CIS/CIS3/CR990148,
K J Hughes
[8] Fighting Computer Crime, A New Framework for
Protecting Information. Dorm B.Parker, John Wiley and
sons, 1998
http://www.washingtonpost.com/wp-
dyn/business/Al 8205-1999Nov3 .html
[9] http://www.lopht.com
[10] Cryptogram, September 1999,
http://www.counterpane.com
[II] Hackers Unlock DVD Code, November 4th,
Washington Post,
[12] CSI Roundtable: experts discuss the role of data
classification now and in the future. Richard Power,
Computer Security Institute Quarterly, V14 (2)
[13] A Guide to Security Technologies - A Primer for IT
Professionals, RSA security
[14] Information Protection Fundamentals, Thomas R.
Peltier, http://www.gocsi.com/ip.htm
[15] Applied Cryptography, Bruce Schneier. Wiley 1998
[16] The Internet Auditing Project
http://www.securityfocus.com/templates/forum message
.html?forum=2&head=32&id=32
[17] The Revised Version of BS7799 - So What's New?

Chris Pounder, Computers and Security VI8 (1999)
pp307-311
[18] Study says "buffer overflow" is most common
security bug, www.cnet.com
[19] Computer Security - What Should You Spend Your
Money On? Keith Buzzard, Computers and Security VI8
(1999)pp322-334

Case law could overturn this view by ruling that 'due
care' requires the use of evaluated products. However
this is not likely in the short term.

© British Crown Copyright 2000. Published with the permission of the Defence Evaluation and Research Agency on
behalf of the Controller of HMSO.

16-1

Dynamic Detection of Malicious Code in COTS Software

Martin Salois and Robert Charpentier
{Martin.Salois@drev.dnd.ca, Robert.Charpentier@drev.dnd.ca}

Defence Research Establishment Valcartier
2459 Pie XI Blvd. North

Val Belair, Quebec, Canada
G3J 1X5

April 2000

Abstract

COTS components are very attractive because they can
substantially reduce development time and cost, but they
pose significant security risks (e.g. backdoors, Trojan
horses, time bombs, etc.).

These types of attack are not detected by standard
virus detection utilities, which are essentially the only
commercially available tools that work directly on bina-
ries. This paper presents a dynamic approach that intends
to address this problem.

The complexity of a real time-bomb attack that dis-
ables a program after a fixed period of time is shown.
Building on this example, a method that works at the bi-
nary level and that could be used to facilitate the study
of other time bombs — and hopefully of all types of mali-
cious actions — is presented. This is the first step toward a
fully automated tool to detect malicious actions in all their
forms.

The method, which monitors processor instructions di-
rectly, is currently intended specifically for Windows NT
running on an Intel processor. It could easily be extended
to other platforms. This paper also discusses the possibil-
ity of using dynamic analysis techniques to overcome the
inadequacy of the static methods.

Finally, a brief survey is presented of commercial tools
that attempt to address this issue, considering where these
products are today and what is needed to obtain a cred-
ible sense of security, as opposed to the often false sense
offered by some commercial tools.

1 Introduction

COTS software has become the de facto standard in most
organisations today. From management's point of view,
it is often much more advantageous to buy certain prod-
ucts off-the-shelf than to develop them in-house. The final
product is often cheaper both in time and in money. It is
more robust and offers more features than what can be ex-

pected from in-house development, and it usually enjoys
much better long-term support.

Unfortunately, an application that is developed by
some other company — possibly in another country —
can pose a serious security risk. Although the threat from
viruses has been known for years and many potent com-
mercial protection tools are available, other threats such
as Trojan horses, time bombs, logic bombs, covert chan-
nels and so on are not as easily dealt with. Once they
become known, virus detection tools can cover some of
them, but the key is "become known": most detectors
work only with known and already analysed threats. As
will be shown, there are virtually no commercial tools of-
fering a reasonable level of protection against unfamiliar
attacks.

DREV initiated the MaliCOTS project in 1997 to ad-
dress this situation. This paper first compares dynamic and
static analysis techniques. Then some preliminary work
on dynamic analysis is presented, focusing on time bombs.
Last, a quick overview is given of some of the commercial
tools currently available. A broader view of the project is
presented in [1].

2 Static vs. Dynamic Analysis

Program analysis can be static or dynamic, or can use
some other kind of technique that cannot clearly be classi-
fied as one or the other. This section takes a closer look at
the advantages and disadvantages of static over dynamic
analysis.

First, using static analysis allows malicious code to be
detected without actually running the program; thus en-
suring that any malicious actions discovered will never be
executed. Also, static analysis can give a good idea of
the program's behaviour, for all possible execution condi-
tions. And there is no performance overhead associated
with static analysis: after a single successful analysis, the
program can run freely. But despite these beneficial prop-
erties, there are some inconveniences. The main drawback

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

16-2

to using static analysis is the undecidability of many inter-
esting properties: they cannot be determined for all cases.
Also, the analysed code needs not be the one that is actu-
ally run: changes can creep in between analysis and exe-
cution. The static analysis of source code is particularly
vulnerable to this last difficulty, because the code must be
compiled. Not only is there a possibility that a malevo-
lent entity will modify the source code directly, but the
language libraries used might be modified so that changes
are not apparent.

Basically, dynamic analysis has the opposite pros and
cons. One cannot detect malicious code dynamically be-
fore it is executed, give or take a few commands. For ex-
ample, imagine a five-instruction sequence that, taken to-
gether, forms malicious code. An analysis tool might keep
track of the last few instructions or use a list of suspicious
instructions and be able to block the execution of the fifth
command. However, this method could be rather limited
on its own, because of the lack of a more global view. But
dynamic analysis does not suffer from the undecidability
characteristic of static analysis, because all run-time val-
ues are available or can be made available at any point in
the program. Although dynamic analysis can have signif-
icant overhead in run-time performance, as compared to
static analysis, in the end it has one major advantage: the
analysed code is the code that actually runs, without any
possibility of alteration.

Although some detection techniques cannot be clearly
defined as static or dynamic, most are one or the other.
Some innovative techniques, however, clearly use hybrid
analysis. For example, Colby [3] proposes a way to define
guards statically for loop expressions and to determine if
they can be proven to be effective; if not, dynamic guards
are inserted to be checked at run-time, when the boolean
value of the expression can be computed.

It seems clear that static and dynamic techniques could
very well be combined to ensure better success in the dis-
covery of malicious code. A tool could do all that is pos-
sible with static analysis to identify vulnerable areas pre-
cisely and then use dynamic analysis to try to eliminate
them. For example, the tool could pinpoint areas of code
where it knows or can determine that static analysis will
fail, and then concentrate on these segments using a dy-
namic method. Thus the overhead of a dynamic process
running on top of a program could be greatly reduced, al-
lowing better surveillance of an untrusted program without
exceeding a tolerable level of intrusion.

3 Time Bomb Detection by Monitor-
ing

Preliminary studies suggested the need to focus on a small
subset of malicious code to begin with. Since a guinea pig
was at hand — a time bomb in a program library that was
being tested — it was decided to study time bombs more
closely.

This section starts by giving a definition of a time
bomb. Then the details of a time bomb case study are
presented. Finally, all possible ways of getting the time in
the Win32 subsystem are examined to outline a possible
way to detect time bombs.

3.1 Definition

A time bomb is malicious code that is triggered in a pro-
gram when a specific logical condition relating to time is
met. "Time" here refers to the actual system time and date
or a countdown in seconds, hours, days, or even months
or years. Although it could be argued that limiting the
number of executions (before declaring the expiration of
evaluation software, for example) could be called a time
bomb, in this analysis it is considered a logic bomb.

For the purposes of security and detection, it does not
matter whether or not the time bomb was inserted inten-
tionally. An unintentional time bomb can still compromise
the system.

Typical examples of time bombs are time computa-
tions that prevent a program from working after x hours,
minutes, days, etc. If this type of time bomb is used ap-
propriately, perhaps to protect proprietary software, it is
not really "malicious." Even so, the process is rarely done
in a correct and standard way, as will be seen in the next
section, so it is still considered an unacceptable risk.

Other time bombs include viruses that are launched at
specific dates: one that wishes "Merry Christmas!" or that
commemorates a special day.

Of course, many programs legitimately need to use
time triggers. For example:

• Virus scanners that you can schedule to work every
day at a specific time,

• Meeting schedulers that notify you of appointments,

• Automatic backup programs,

• Games that limit the time to finish a puzzle.

Deciding if a "time bomb" is malicious or not has been
left out of present concerns, although possible ways of de-
ciding automatically will be discussed later on. For the
moment, our only interest is in locating them; automatic
classification mechanisms are useless without tools for de-
tection.

3.2 A Case Study

To get a feel of what a time bomb may look like in as-
sembly code, along with its possibly great complexity, a
real-world example — from a source that shall remain
nameless — will be examined. It will simply be called
SoftBomb.

SoftBomb is distributed as a DLL. A demo version is
available that will only work for one month. Thus, in ef-
fect, there is a time bomb that detects that the same day in
the next month has passed and triggers the stopping of the

16-3

Code Excerpt 1: A legitimate time bomb

SYSTEMTIME systemTime;
GetSystemTime (ksystemTime) ;
if(systemTime.wMonth > previousSystemTime.wMonth){

// Then do something

executable. Since SoftBomb is a DLL, it cannot actually
stop the execution; it sends an error message saying that
the evaluation time has expired when you try to initialise
it. For the sake of simplicity, we will continue to say that
it "stops" execution.

A time bomb needs to get the system time from some-
where. As will be seen in the next subsection, there are
many ways of doing this, even restricting our studies to
legal Win32 methods. After obtaining the date/time, the
time bomb will check it against an installation date that it
stored somewhere safe — preferably a place unknown to
the user so he cannot simply delete it. This last require-
ment is not actually part of the time bomb itself, so this
paper will not explore the assembly details of how Soft-
Bomb stores the installation date, only the general scheme
and how it can be bad for user systems.

The idea behind a successful protection scheme is to
make it as obscure and as irrational as possible. If it is
done in the simplest and most sensible way, crackers will
have an easy time breaking it. For example, say you want
to know if the month has changed in a legitimate time
bomb. You would simply proceed as is shown in Code Ex-
cerpt 1. However, this way of doing things would be too
simple a protection scheme. As will be seen, SoftBomb is
much more "clever."

Note that in Win32 systems, the time and the date
travel around in the same structures most of the time. For
instance, GetSystemTime gives both time and date.
There is no function called GetSystemDate. Unless
noted otherwise, the term time will be used to mean both
time and date.

This subsection takes a look at how SoftBomb gets the
system date, how it does multiple checks on it, and where
the installation date is stored. As a bonus, for complete-
ness and possible future use, a few pointers are given on
how one might crack SoftBomb.

First it must be mentioned that the time bomb in Soft-
Bomb is located in a particular function that the user must
call to initialise the library before use. Since SoftBomb is
a DLL, this simplifies the analysis a little because DLLs
are meant to be used by other programs that are not sup-
posed to know their inner workings. This means that they
have clear-text names and clear-cut boundaries for func-
tions. This fact allowed us to narrow the search to a small
fraction of the whole DLL. This will not always be the
case: a time bomb could be scattered over a much larger
fragment of code.

3.2.1 Getting the Date

Since simply getting the date with the GetSystemTime
function would be too obvious, SoftBomb uses another ap-
proach: it opens a file that it is certain to find in the main
Windows NT directory, and gets the time of the last access
to this file.

In this case, the file is win. ini. Since it is an es-
sential configuration file for Windows NT, it is always
present and, by opening it, SoftBomb updates its access
time. Hence, it gets the system date after transforming it
from a file-time structure to a system-time structure.

The actual code is shown in Code Excerpt 2 (note that
all the assembly code in this section was obtained by us-
ing Sang Cho's powerful Windows Disassembler [2]). The
comments after semicolons are inserted automatically by
the disassembler, which identifies common Win32 API,
even with some form of static def/use analysis as, for ex-
ample, at line 29 where it knows that ebp contains the
address of the function CreateFile, inserted at line 23.
The comments in italics after two slashes were inserted
manually after analysis, to ease comprehension and to ex-
plain what is going on in the lines that were skipped to
save space. Reserved keywords for instructions are high-
lighted in bold. Line numbers are used because they are
more convenient than memory addresses.

Looking at the code more closely, it can be seen on the
first line that SoftBomb gets the system directory, which
is c : \winnt\system32, and stores the address of this
string in ecx (line 2), then in eax in the function called
at line 5.

After that, it surreptitiously changes the string, charac-
ter by character, until it becomes c : \winnt\win. ini
(lines 9, 11, 16, 17, 18, 23,25, 26), interlacing this change
with the normal operations necessary for the next function
call to the API CreateFileA function (line 28), which
requires 7 parameters (the 7 preceding pushes). This func-
tion is used to open the existing file win. ini.

Then SoftBomb uses the functions GetFileTime
and FileTimeToSystemTime to get the file's last ac-
cess time and convert it into the desired system time for-
mat. SoftBomb now has the current system time and date
to do with as it pleases.

3.2.2 Checking the Date

To be certain that a cracker could not simply change one
jump instruction to crack it, SoftBomb checks the date two
different ways. And then to be really sure, it checks again.

16-4

Code Excerpt 2: Getting the current date

1F0017AD

1F0017AF
1F0017B6

1F0017B8

1F0017B9

1F0017BE

1F0017C1

1F0017C3

1F0017C9

"c: "winnt"WIN.em32 "
"c: "winnt"WIN.Im32 "

call ebp ;;jmp KERNEL32.GetSystemDirectoryA
lea ecx, dword [esp+00000288] // "c:"winnt"system32" at address ecx
push 0000005C
push ecx
call 1F0056F0 // among other things, copies ecx in eax
add esp, 00000008
test eax, eax
je 1F00195D
mov byte [eax+01] , 57 // changes memory to "c:"winnt"Wystem32"

// ... The next 6 instructions are inc eax 6 times (so eax=eax+6).
1F0017D3 mov byte [eax-04] , 49 // changes memory to "c:"winnt"WIstem32"

inc eax
push 00000000 //hTemplateFile = NULL
push 00000080 //dwFlagsAndAttributes = FILE'ATTRIBUTE'NORMAL
push 00000003 //dwCreationDistribution = OPEN EXISTING
mov byte [eax-04] , 4E //changes memory to "c:"winnt"WINtem32"
mov byte [eax- 03] , 2E //changes memory to
mov byte [eax-02] , 4 9 //changes memory to
lea ecx, dword[esp+00000294]
push 00000000 //IpSecurityAttributes = NULL
push 00000003 //dwShareMode
mov ebp, dword[1F013194]
mov byte [eax-01] , 4E // changes memory to "c:"winnt"WIN.IN32"
push 8 0 00 0000 // dwDesiredAccess = GENERIC READ
mov byte [eax] , 4 9 //changes memory to "c:"winnt"WIN.INI2"
mov byte [eax+01] , 00 // changes memory to "c:"winnt"WIN.INI"
push ecx // IpFileName = "C:"winnt"WIN.INI"
call ebp ;;jmp KERNEL32 . CreateFileA //(7 parameters=7 pushes)

//... Checks for errors. Loads the time in registers for the following pushes.
1F001831 push eax // IpLastWriteTime

push ecx // IpLastAccessTime
push edx // IpCreationTime
push esi // hFile
call dword [1F013190] ;;jmp KERNEL32 .GetFileTime // (4params=4pushes)

//... Checks for errors. Closes the file. Puts the file time in registers for following pushes.
1F00185E push eax // IpSystemTime
1F00185F push esi // *lpFileTime
1F001860 call edi ;;jmp KERNEL32 . FileTimeToSystemTime // (2params=2pushes)

// ... Checks for errors.

1F0017D7

1F0017D8

1F0017DA

1F0017DF

1F0017E1

1F0017E5

1F0017E9

1F0017ED

1F0017F4

1F0017F6

1F0017F8

1F0017FE

1F001802

1F001807

1F00180A
1F00180E

1F00180F

1F001832

1F001833

1F001834

1F001835

So, there are three different checkpoint that are performed
one after the other, each using different logic to see if the
expiration year, date, and day have been reached or to
check if the date itself has been tampered with. Let us
look at them more closely.

The first checkpoint is pretty simple. It is shown in
Code Excerpt 3. In the first line the installation date is
compared with the current date, as obtained in the previ-
ous subsection. If the installation year is higher than the
current year, it assumes there is an error, reset its struc-
tures and checks again. If there is still an error, it goes
to the second checkpoint. There is actually a bug in Soft-
Bomb at line 3: if the year has changed, it stops initialis-
ing SoftBomb, giving an expiration message. Therefore, if
you install SoftBomb on December 315', 1998, it expires
on January 1st, 1999! Otherwise, the check continues by
verifying that the expiration month has not passed. If it
has, it ends the execution.

The second and third checkpoints are somewhat less
independent than the first. In fact, they could probably be
considered as a single checkpoint since the second jumps
into the third to complete some checks. However, for clar-
ity, it is better to view them as two different phases.

In Code Excerpt 4, the second checkpoint first com-
pares the install year with the current year (line 1). If they
are not the same, it moves on to the third checkpoint (line
2). If they are equal it checks the install month against the
current month (line 4) and, if they are not the same, moves
on to verify that only one month has passed and that the
same day in the next month has not yet passed (line 7 and
lines 10-19). If it is still the same month, it checks to see
if the date is correct — that the system has not gone back
in time — (line 7), decides that SoftBomb has not expired,
and finishes its initialisation (jump at line 8).

SoftBomb then enters its third and final checkpoint,
shown in Code Excerpt 5. At this point, it knows that the

16-5

Code Excerpt 3: First checkpoint

1F00186E crap word [esp + lS] , ax //installation year, current year
1F001873 ja 1F001897 //install year ^ current year (error, double check)
1F001875 jne 1F0 01A2 0 //stops if year has changed
1F00187B mov eax, dword[esp+lA]
1F00187F xor ecx, ecx
1F001881 mov ex, word[esp+0000008A]
1F001889 and eax, 0000FFFF
1F00188E inc eax
1F00188F emp eax, ecx //install month+1 (expiration month), current month
1F001891 jl 1F001A20 //stops if expiration month j current month

Code Excerpt 4: Second checkpoint

emp word [esp + 16] , ax //install year, current year
jne 1F0019C6 //if install != current, go to next checkpoint
mov ax, word[esp+26]
emp word [esp + lA] , ax //install month, current month
jne 1F0019A2 //if install != current, check day
mov ax, word[esp+2A]
emp word [esp + 18] , ax //install day, current day

1F0019A0 jbe 1F0019FC //same year & same month & install current, OK
 // inserted by disassembler to indicate a block's ending/starting.

xor eax, eax
mov ecx, dword[esp+lA]
mov ax, word[esp+26]
and ecx, O000FFFF
sub eax, ecx //current month, install month
emp eax, 00000001
jne 1F0019C6 // if difference != 1, then go to next checkpoint
mov ax, word[esp + 2A] //difference = 1, check if same day not reached

1F0019BF emp word [esp + 18] , ax //install, current
1F0019C4 jae lf0019fc //if same day next month not passed, ok

1F001983
1F001988

1F00198A

1F00198F
1F001994

1F001996
1F00199B

1F0019A2

1F0019A4

1F0019A8

1F0019AD

1F0019B3

1F0019B5
1F0019B8
1F0019BA

year has changed (actually, because of the previously men-
tioned bug, SoftBomb never gets here, but let us pretend it
does). At lines 1,2, and 3, it checks to see if the difference
is only one year; if not, it stops. If the year difference is
indeed only one, it moves on to check if the current month
is January (lines 4 and 5) and if the current month is De-
cember (lines 6 and 7), the only possible situation for a
one-month evaluation. If this is not the case, execution
stops; if it is, one final verification is made to check that
the expiration day has not passed. Finally, if all is clear,
the program continues with its normal initialisation.

3.2.3 Storing the Date

In the previous subsection, the installation date was men-
tioned. But where does SoftBomb store the date on which
it was installed? As already stated, this question is ac-
tually outside the scope of time-bomb detection. But the
reader might be interested, so SoftBomb 's approach will
be outlined here.

It was also previously mentioned that it can hardly be
considered malicious for a company to try to protect its
software but that the methods sometimes used can be quite
malicious if they are not regular and standard. The follow-
ing discussion supports this point.

Once again, when it comes to hiding information for a
protection scheme, obscurity is the way to go. You want
to hide the information as deeply as possible, in a place
where the user will not look; or should he decide to look,
where he will not find anything suspicious.

SoftBomb's protection scheme is cunning in this sense
because it does nothing for the first few uses. It waits
a random number of times before storing an installa-
tion date on the hard drive. And a careful or suspi-
cious user monitoring the first few runs of SoftBomb to
see if it is legitimate is unlikely to catch the suspicious
write to the Registry — the Registry is where all of
Windows NT's configurations are stored — because Soft-
Bomb stores the installation date there using a key incon-
spicuously named FontAttributes. A key with this
name would easily be overlooked, especially since it is
placed in a region of the Registry where the configuration
of the desktop is kept (registry path HKEY_CURRENT_
USER\Control Panel\desktop). Among the le-
gitimate keys stored at this place, there are Au-
toEndTasks, Pattern, IconHorizontalSpac-
ing, IconVerticalSpacing, TileWallPaper,
Wallpaper, and so on. It is easy to see why one called
FontAttributes would not be looked at twice.

16-6

Code Excerpt 5: Third checkpoint

1F0019D9 sub eax, ecx //install year, current year
1F0019DB cmp eax, 00000001
1F0019DE jne 1F001A20 //if difference != 1 then stop
1F0019E0 cmp word [esp+26] , 0001 //current month, January (01)
1F0019E6 jne 1F001A20 //ifcurrent month not January then stop
1F0019E8 cmp word[esp + la] , 00OC //install month, December (c=12)
1F0019EE jne If001a20 //if install month not December then stop
1F0019F0 mov ax, word[esp+2a]
1F0019F5 cmp word [esp + 18] , ax //install day, current day
1F0019FA je 1F001A20 //Qc=jb) if install day passed then stop

// ... Continue with normal initialization.

Finally, another random number of executions after
expiration, SoftBomb creates another Registry key in the
same registry path, called DragDelay. The purpose of
this key is not completely clear, but it seems to be a flag
that indicates that SoftBomb has expired. Since it is not
really part of the time bomb itself, it was not investigated
further.

Now that it has been shown how a real-world soft-
ware product hides the installation date, it is trivial to
demonstrate how the activity could be bad for a system:
if programs were to write to the Registry anywhere they
please, without ever cleaning up behind them, a mainte-
nance nightmare would result. Legitimate and correct pro-
grams have a difficult enough task cleaning up their own
mess; we cannot have programs writing where they are not
supposed to. Clearly, such behaviour is unacceptable.

3.2.4 Cracking It

Only one matter remains to conclude this case study: how
could the time bomb in SoftBomb be circumvented? Al-
though some might perceive such action as a bad thing —
after all, cracking software products is probably illegal in
most countries — this example is only an illustration. The
results of the work could later be extended to protect a
system against more serious threats. For instance, a virus
could be stopped dead in its tracks simply by dynamically
stopping the time bomb that triggers it.

So, how could a "cracker" crack SoftBomb? That is,
how can one remove the protection? There are many pos-
sible solutions. The two most plausible ones are given here
or, at least, the two more practical in our view:

• Systematically replace all instructions that jump to
the end sequence with noops in order to avoid ever
getting to the stopping code. This could be done
statically with a hexadecimal editor, or dynamically,
on the fly.

• Add a routine to SoftBomb that would execute at the
beginning of the initialisation function. This "hook"
would simply delete the two registry keys identified
in the previous subsection and transfer control back
to the normal flow of the function.

Either solution could be used by a dynamic protection
tool to thwart the time bomb, but the first seems more di-
rect and easier to implement. One must simply reverse the
jumps at run-time, a simple enough task for anyone famil-
iar with debuggers.

This concludes our case study. The following sections
look at the various ways to get the system time and date.

3.3 How to Get the Time and Date

This section explores the many ways to get the system
time and date in Windows NT via the Win32 subsys-
tem. The authors do not pretend that the list is exhaustive:
smart, malicious attackers will always come up with new
approaches. Also, it would take many pages to illustrate
all the possible ways that the research team was able to
devise to get the system time. A simple list of the Win32
functions that can provide the time or date and of the func-
tions that can modify or control the time or date in any
way. There are many of them, with many parameters that
control their behaviour, and many functions that perform
essentially the same task have different implementations
with different names: CreateFile, CreateFileA,
and CreateFileEx, for example. Consider this a first
step in the construction of a database of knowledge on ma-
licious code, a subject we will return to.

First, let us consider functions that can give the time
of day (or the date) directly or indirectly in combination.
Code Excerpt 6 presents the signatures of these functions.
The function names are in boldface to make it easier to
spot them among the parameters; they are presented in al-
phabetical order.

For historical reasons, many formats for the date/time
exist and are still available. For example, a date can be
computed from a long integer containing the number of
seconds since 1970, or it can be directly stored as dd-mm-
yyyy> or yyyy-mm-dd, and so on. This explains in part
the large number of functions that can give the time/date.

It has been seen that the combination of Create-
File, GetFileTime, and FileTimeToSystem-
Time can be used to find the date. Following the same
pattern, one could, for instance, create a file in MS-DOS
mode (which is provided for backward compatibility), do

16-7

 Code Excerpt 6: Functions that can be used to get and compare time and/or date

LONG CompareFileTime (CONST FILETIME *lpFileTimel, CONST FILETIME *lpFileTime2);
HANDLE CreateFile(LPCTSTR lpFileName, DWORD dwDesiredAccess, DWORD dwShareMode,

LPSECURITY_ATTRIBUTES IpSecurityAttributes, DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes, HANDLE hTemplateFile) ,-

BOOL DosDateTimeToFileTime (WORD wFatDate, WORD wFatTime, LPFILETIME lpFileTime) ;
BOOL FileTimeToDosDateTime (CONST FILETIME *lpFileTime, LPWORD lpFatDate, LPWORD lpFatTime)
BOOL FileTimeToLocalFileTime (CONST FILETIME *lpFileTime, LPFILETIME lpLocalFileTime) ;
BOOL FileTimeToSystemTime (CONST FILETIME »lpFileTime, LPSYSTEMTIME IpSystemTime);
HANDLE FindFirstFiletLPCTSTR lpFileName, LPWIN3 2_FIND_DATA lpFindFileData) ;
HANDLE FindFirstFiIeEx(LPCTSTR lpFileName, FINDEX_INFO_LEVELS fInfoLevelld,

LPVOID lpFindFileData, FINDEX_SEARCH_OPS fSearchOp, LPVOID IpSearchFilter,
DWORD dwAdditionalFlags);

BOOL FindNextFile (HANDLE hFindFile, LPWIN32_FIND_DATA lpFindFileData);
BOOL GetFileTime (HANDLE hFile, LPFILETIME lpCreationTime, LPFILETIME lpLastAccessTime,

LPFILETIME lpLastWriteTime);
VOID GetLocalTime (LPSYSTEMTIME IpSystemTime);
LONG GetMessageTime(VOlD) ,-
VOID GetSystemTime (LPSYSTEMTIME IpSystemTime);
VOID GetSystemTimeAsFileTime (LPFILETIME IpSystemTimeAsFileTime) ;
DWORD GetTickCount(VOlD) ;
NET_API_STATUS NetRemoteTOD(LPTSTR UncServerName, LPBYTE *BufferPtr);
LONG RegEnumKeyEx(HKEY hKey, DWORD dwlndex, LPTSTR lpName, LPDWORD lpcbName,

LPDWORD lpReserved, LPTSTR lpClass, LPDWORD lpcbClass, PFILETIME lpftLastWriteTime);
LONG RegQuerylnfoKey (HKEY hKey, LPTSTR lpClass, LPDWORD lpcbClass, LPDWORD lpReserved,

LPDWORD IpeSubKeys, LPDWORD IpebMaxSubKeyLen, LPDWORD lpcbMaxClassLen,
LPDWORD lpcValues, LPDWORD lpcbMaxValueNameLen, LPDWORD lpcbMaxValueLen,
LPDWORD IpebSecurityDescriptor, PFILETIME lpftLastWriteTime);

BOOL ReportEvent (HANDLE hEventLog, WORD wType, WORD wCategory, DWORD dwEventID,
PSID lpUserSid, WORD wNumStrings, DWORD dwDataSize, LPCTSTR *lpStrings,
LPVOID lpRawData);

BOOL SystemTimeToFileTime (CONST SYSTEMTIME * IpSystemTime, LPFILETIME lpFileTime);
BOOL SystemTimeToTzSpecincLocalTime(LPTIME_ZONE_INFORMATION lpTimeZonelnformation,

LPSYSTEMTIME lpUniversalTime, LPSYSTEMTIME lpLocalTime);
MMRESULT timeGetSystemTime (LPMMTIME pmmt, UINT cbmmt) ;
DWORD timeGetTime(VOID) ;

a GetFileTime, and then do a FileTimeToDos-
DateTime to get the date in a different format that could
be converted to system time.

Remember that the idea for a malicious scheme is to
confuse an eventual detection process. So instead of creat-
ing a file, one could write a null character to a known file
or simply open it. We will not attempt to cover all such
variations.

The functions in lines 9, 10, and 13 could be used to
go through the system directory files to extract the most
recent date. Since the files in this directory are accessed
often, at least the date will almost certainly be correct, if
not the time. Similarly, the registry functions (lines 22,
24) could be used to get the last access time of often-used
registry keys.

Via the logging mechanisms, it is possible to know
when Windows NT was started. In many installations, the
machines are rebooted every day. If that is case, the date
is available directly. If it is not the case, functions that
give the elapsed time since the last reboot (lines 20, 34)
could be used to calculate the current date and time. A
program could send a message to itself and then get the

date of the event, which is automatically recorded by the
mechanism. Many Win32 executables handle incoming
messages — mouse clicks and keyboard commands, for
instance — this way, so an attacker could use the function
GetMessageTime to get the elapsed time between the
starting of Windows NT and the handling of the message.

If an attacker knows that his target system obtains time
information from a network, he can use the "network re-
mote time of day" function (line 21).

This concludes our survey of how to get the time and
date. Now, let us look at two ways to set a time bomb that
do not require the application itself to look at the time. The
signatures for these functions are given in Code Excerpt 7.

If the target is on a network, one can simply ask the
system to wake the executable code up at a given future
time. Of course, one must assume that it will still be run-
ning then.

Similarly, in the next two functions if one knows that
the system runs for extended periods of time, one can set
up a timer that will "beep" at regular intervals: several
days or even weeks.

16-8

Code Excerpt 7: Functions to set the system time, a file time or to set a timer

NET_API_STATUS NetScheduleJobAdd(LPWSTR Servername, LPBYTE Buffer, LPDWORD Jobld);
UINT SetTimer(HWND hWnd, UINT nIDEvent, UINT uElapse, TIMERPROC lpTimerFunc);
BOOL SetWaitableTimer (HANDLE hTimer, LARGE_INTEGER *pDueTime, LONG lPeriod,

PTIMERAPCROUTINE pfnCompletionRoutine, LPVOID lpArgToCompletionRoutine, BOOL fResume)

3.4 Monitoring for Time Bombs

Based on these examples, it is now possible to propose
ways to detect a time bomb in an executable code. Let us
look briefly at two possibilities:

• Hook — that is, "intercept and redirect" in Win32
terminology — all of the time-supplying functions
that were enumerated in the previous section. De-
termine who calls them and watch the callers for
anomalous behaviour.

• The detection tool itself can get the date and verify
on the fly, at assembly instruction level, if any data
that is equivalent to the date is used to determine the
results of conditional jumps.

Once more, "time" here really means "time and date."

In the next two subsections, the pros and cons of these
two semi-automatic approaches are explored, then a com-
bination of the two is proposed for maximum benefit. The
subsection concludes with possible ways to automate the
process by the use of specifications.

3.4.2 Comparing with Current Time

In this method, a monitoring tool would be created that
is similar to what Jeffery proposed in [5]. A full-blown
virtual machine is not needed; only a way to control the
execution of applications and the ability to examine (and
possibly change) the target program's memory.

A specialised monitor is needed, one that gets the time
and date for itself. Then it runs the target program, opcode
by opcode, and checks to see if it uses data equivalent to
the time or date to control the execution flow. If so, and if
the tool is being used in a certifying environment, it raises
a flag telling the test engineer where to check the code
more carefully. If it is not being used in such an environ-
ment, all it could do is to stop the application at that point,
warn the user, and wait for further instructions. Because
assembler code could not be provided for the user to ver-
ify, the message would have to be much simpler.

This method is certainly more powerful than the pre-
ceding one because it includes it. Effectively, if the target
program uses the time data after returning from one of the
"time" functions, this method will catch it. This method is
also much more intrusive than the other, and consequently
would be much slower.

3.4.1 Hooking the Time Functions

This approach requires a program to intercept all calls
made to the functions enumerated in Subsection 3.3. Com-
mercial and freeware programs that do this have been
noted, so the task should not pose too great a technical
difficulty.

This technique would be used in a certifying environ-
ment; i.e., a closed and clean environment in which to per-
form extensive tests on the target program. During these
tests, if the executable calls a "time" function, a flag is
raised to look more carefully at the program to see if its
behaviour has changed from normal. If it has, the tool
can pinpoint the region of code where the time was ac-
cessed from and, hopefully, indicate if there is indeed a
time bomb at that point in the assembly code of the exe-
cutable.

By itself, this method cannot actually stop a time bomb
from being triggered; it can only indicate the possibility
of triggering and narrow the region for a human search.
However, the intrusion level is minimal and the method
would not limit the number of tests that can be run.

Evidently, if an attacker can devise a way to access the
system time and date that was not included, this method
would be powerless to detect it.

3.4.3 Combining the two

To thwart the second method, an ingenious attacker could
simply add a fixed number to the day, month, and year. If
he adds 10, for example, and the monitoring application
knows that the date is "03-04-2000," it would not detect
control-flow jumps that check against 13, 14, and 2010 re-
spectively. It would think they are simply numbers that
the target program uses for its normal procedures. This
was illustrated in the first checkpoint of SoftBomb exam-
ple (Code Excerpt 3), where SoftBomb adds one to the in-
stallation month to know the expiration month. It could
as easily have subtracted one from the current month to
achieve the same result.

In order to prevent this simple scheme from defeat-
ing the second technique, it should be combined with the
"hook" technique. Statically, it can recognise a call to
a precise API function. It would be a simple matter to
stop the target program only on "time" functions, and start
examining the application closely only from there. This
would considerably reduce the level of intrusion. A simple
form of dynamic def/use graph could also be implemented
to keep track of the time data to determine if a control flow
condition is using some modified form of it.

To sum things up, a good way to detect a time bomb
dynamically would be:

16-9

1. Create a monitor that can:

• control the execution of a target program,

• break on any instruction, and

• examine the content of its memory address
space.

2. Determine statically where the "time" functions are
called and insert breakpoints at these points.

3. Execute the target program step-by-step, keeping
track of time data and checking to see if the flow
of control is influenced by it. If so, raise a warning.

The first step poses only technical difficulties, depend-
ing on the machine, the operating system and its architec-
ture. The second step is even simpler since a good disas-
sembler, such as the one that was used in Subsection 3.2,
will do most of the job for us.

The last step is not that complex either. It only requires
a good def/use mechanism to keep track of variables. This
is easily done for registers, but problems may arise when
memory is used to store variables and data structures. A
resourceful attacker could use quite complex data struc-
tures, including recursive ones, or could even encrypt the
time data. Nonetheless, building a def/use graph dynami-
cally is a lot easier than doing it statically. The only major
problem that can be foreseen is the amount of memory re-
quired to keep a "virtual double" of all time-related vari-
ables.

So far only a semi-automatic tool has been discussed:
the first logical step toward a fully automated tool. First,
knowledge needs to be gathered and a great deal of ex-
perimentation on the subject is required to augment our
experience before our team can even think of automating
the process. Still, if an automated tool is ever to see the
light of day, it is necessary to tell the tool what is and what
is not expected from a program. The following subsection
addresses this subject.

Of course, static analysis could be combined with a
dynamic tool. In the MaliCOTS project, static analysis
techniques to detect malicious code are under investiga-
tion. The current plan is to combine the power of the two
types of analysis, since a preliminary study indicates that
the shortcomings of one are the strengths of the other (Sec-
tion 2).

3.4.4 Giving Specifications

Following the example of Ko's work in [6], specifications
could be used to tell our detection tool what the normal
behaviour of the target program is. There are three main
ways to give a specification:

1. Specify exactly what the application does.

2. Specify what it can and cannot do in general.

3. Specify a suspected vulnerability.

The first choice is impractical for long programs be-
cause of the sheer length of the specification, since one
must "reverse-specify" the application.

The third choice is much easier to use, but it lacks gen-
erality: too much detail about actual time bombs must be
provided. Moreover, this approach is useless against new
time bombs. This approach suffers from the shortcomings
of virus detectors: it is effective only against known at-
tacks.

The authors believe that the second choice is the way
to go. In the particular case of time bombs, a specification
might be extremely simple: should the application base
any of its normal operations on the current time? Yes or
no?

Of course, finer grain specifications are needed in the
case where an application is required to use the time. The
language should be able to specify that a program needs
the time for one particular input only, and for no other. In
a fully automated tool, the administrator should be able
to tell the monitor that "If the user requests that particular
action, then the application should be allowed to use the
time. Otherwise, it should not." For example, in a virus
detection tool, if the user requests a scan every day at 6
o'clock then the monitor should know that it is permissi-
ble for the application to check the time against 6 o'clock,
and not raise a warning. In any other situation it should
raise one.

Specifications could also be useful to organise our
knowledge of malicious code. For instance, if a grammar
to specify malicious code is defined, a tool could be de-
vised that would not need to be recompiled simply to add
new knowledge to it. It could have a separate database that
would be checked dynamically.

The two levels of specification could (and probably
should) be combined. For example, to simplify specifi-
cation writing, there should be only one way of specifying
"get the time." For example, let the GetSystemTime
function be the one and only function to get the time in
our user-level specification. Then the user could say some-
thing very simple like:

SYSTEMTIME systemTime,-
IF(GetSystemTime(&systemTime)

THEN violation();

Internally, our monitoring application would look in
its database where all the different possibilities of getting
the time are specified, link them with the GetSystem-
Time specification, check for them, and raise a violation
if any is used.

In the end, the user-level specification might be as sim-
ple as a checklist showing all the possible malicious ac-
tions our tool can detect. The user would need only to
check the kind of malice he wants to be warned against.

16-10

3.5 Time Bomb Detection - Conclusion

In this chapter, the process of creating and using a time
bomb was examined very closely via the example of the
expiration scheme for SoftBomb. It has shown that, in as-
sembly language, the process can be quite complex. The
instructions required might be spread through a large part
of the executable code.

Although in this particular case the limitations im-
posed on DLL coding forced all the malicious code to
be in one function, we will not always be this lucky. In
a normal application, the malicious code could be scat-
tered around the entire executable file. For example, an
intelligent programmer could do what SoftBomb does —
change the string system32 to the string win. ini —
while remaining unnoticed, by altering one letter at a time
in seven different functions. The activity would certainly
be more difficult to spot. Only the attacker would know
which functions to execute to get the wanted result. He
could make the process even more complicated by spec-
ifying an order for the function calls. By adding simple
checks, he could see to it that the malicious function would
be executed only by a precise sequence of operations, in
effect creating a trapdoor.

Many ways to get the time and date, or to set timers
to execute a task at a particular time have been described.
The list may not be exhaustive, but it constitutes a vital
first step towards identifying all the possible ways of get-
ting system time.

Several approaches were proposed for a tool to detect
time bombs. Although not all have been tested experi-
mentally and no fully working prototypes have been cre-
ated, the authors feel that the ideas expressed in this chap-
ter could be useful not only toward the detection of time
bombs, but also toward the goal of detecting any other
kind of malicious code. Of course, any such steps would
require that the extensive analysis that was performed for
time bombs be extended to other forms of malicious code.
The authors think that such a tool could relatively easily
be adapted to provide continuous protection, as opposed to
being used only in a testing environment. Because many
errors in computer systems are the result of user error, such
a tool would certainly be valuable.

4 COTS against COTS

Three commercially available products that offer protec-
tion against malicious code were examined, concentrating
on those that can work at the desktop level — since most
COTS will be installed via a CD-ROM or an intranet —
and on those that are specifically designed to block mali-
cious code — thus excluding network intrusion detectors.
Most of the products examined have sister versions that
can work at the network level. Although the selection is
by far not exhaustive, most of the other available prod-
ucts have the same basic functionalities. Plus, almost all
of these tools work only on mobile code (Java, ActiveX,

JavaScript...), with some offering very basic protection
against COTS that does not come from the network (e.g.
CD-ROM, diskettes). This is the case for two of the three
presented.

Neeley [11] gives a more complete list of available
products, along with a good overview of what is at stake
when dealing with this sort of program. Missing from this
list are newer products from companies such as Norton
and McAfee. The list of potential products is growing
very rapidly, most of them claiming that they are the "First
Product to Offer Complete Protection for Web Users". It
can be rather confusing to determine exactly what level of
protection is provided by current products.

4.1 Classifying

Randall [12] roughly defines three approaches to security
for personal PCs. Most products today combine them to
offer a wide range of protection. The three are:

Personal Firewall (Blocking) A simple gatekeeper that
allows the user to control what passes in and out
of communication ports. This only blocks certain
channels, without any form of content analysis, and
is therefore highly efficient speed-wise. Most fire-
wall vendors have a personal PC version available.
eSafe Protect Desktop uses this technology to block
communication ports.

Sandbox Popularised by Java, the Sandbox model en-
closes the application in a virtual environment in
which it can cause no harm. eSafe Protect Desktop
also uses this technology to prevent selected pro-
grams from accessing specifically enumerated re-
sources. This approach appears promising, but "Be-
cause of the high potential for programming errors,
'the sandbox is almost a moot point. You can't
count on the sandbox for security,' says Ted Julian, a
senior analyst for Forrester Research International"
[11].

Scanning Much like current virus scanners, the tool scans
the mobile code before downloading and executing
it to see if it contains potentially malicious actions.
It if does, the code if prevented from reaching the
system. This technique is quite hard on system per-
formance. Finjan's SurfinShield and Trend Micro's
PC-cillin 6 both use this technique.

Let us examine these products in a little more detail
and then discuss their shortcomings.

4.2 The Tests

Three products were tested, to give an indication of what
is available on the market. The test consisted of trying to
run the following documented hostile applets or ActiveX
controls:

16-11

Hostile Applets Tiny Killer App Exploder Runner ActiveX Check Spy

eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB

Surfinshield Online 9/9 blocked NB B B 13/17 blocked NB

PC-cillin 9/9 blocked NB B NB 13/17 blocked NB

Table 1: Comparison of what the three products successfully blocked (B: Blocked, NB: Not Blocked)

LaDue's Collection of Increasingly Hostile Applets [7]
9 documented hostile applets.

Tiny Killer App(let) [9] A small applet that forces Net-
scape to cause an access violation, thereby killing
the browser.

McLain's Exploder [10] Exploder is an ActiveX control
that performs a clean shutdown of your computer.

McLain's Runner [10] Runner is an ActiveX control
that demonstrates how to run an arbitrary program
on the browser's machine.

Smith's ActiveX checks [13] Checks for vulnerabilities
to 17 documented hostile ActiveX controls.

Tegosoft's Spy [4] An ActiveX control that demonstrates
how it can intercept what the user types on his key-
board. When activated, it replaces every key one
types in NotePad into the sequence of letters form-
ing www. tegosof t. com — press any key, and
w appears, press 16 random keys and the whole se-
quence appears, the next key begins a new line and
it starts again.

The Java applets were tested on both Netscape and MS
Internet Explorer, while the ActiveX controls work only in
MS Internet Explorer.

The results of the tests are presented in Table 1. All the
products perform quite well on known and documented
mobile code attacks, but unfortunately it is easy to find
an attack that defeats them, as indicated by the tiny killer
applet that eludes all three products.

Another interesting detail is that Tegosoft's Smart-
Loader, the ActiveX control responsible for loading the
Spy control, was blocked at first by SurfinShield. This is
interesting because the control is signed and perfectly le-
gitimate. This illustrates the fact that legitimate software
can easily be considered illegitimate. The line is not clear
between what is legitimate and what is not.

eSafe Protect Desktop 2.1 According to its advertis-
ing, Aladdin Knowledge System's product "is a cutting
edge, personal Internet content security solution for in-
dividual PC users, at home or at work. eSafe Protect
Desktop includes a patent-pending anti-vandal sandbox
module, an advanced, ICSA-certified anti-virus scanner,
a unique personal firewall module, and a comprehensive
resource protection system." (http : //www. esaf e .
com/products22/products .html).

It includes an interesting sandbox feature that can, for
example, prevent all programs from modifying the desk-
top, or prevent a specific application from accessing cer-

tain directories. It works as a super Access Control Lists
(ACL) in the sense that, in addition to normal ACLs func-
tions, which restrict access based on users, it allows access
to be restricted for individual programs. Although this fea-
ture was of great interest in theory, in reality it did not stop
the installation of the annoying WinZip icon on the desk-
top (©).

The interface is attractive, although rather complex, as
is the case with most tools in this category. This is defi-
nitely not entry-level material and, contrary to the public-
ity, it is not usable by the average user. As is so often the
case, the default options do not offer the best level of pro-
tection the program can provide, which can be misleading.

The product provides full antivirus protection and it
also creates and manages file integrity checks. Overall,
it is a good contender and it is worth following up future
versions.

Surfinshield Online 4.7 Finjan Software's product "en-
ables companies to conduct e-business safely by providing
proactive, run-time monitoring of executables, Java and
ActiveX on corporate PCs" (http://www. finjan.
com/products_home . cf m).

It uses a central server holding security policies and
central knowledge. When a desktop detects a security
breach, it informs the server, which immediately informs
all clients, providing immediate protection for the entire
network as soon as a breach occurs. Only the client is
provided in the online version, the one tested; the server
resides at Finjan's. Although this configuration limits op-
tions, it was used to provide a fair comparison with the
other products.

A disturbing event occurs during installation: the
product says that it is going to "adjust" your browsers. It
is easy to understand that such a tool needs to make some
changes to a system to protect it effectively. But what ex-
actly does it do? Is the change safe? Does one really want
a COTS product to change local programs?

LaDue [8] virulently describes the weaknesses of this
product. In summary, he says that SurfinShield is only
good at providing protection against known attacks. Even
then, it is not very good since the "knowledge" is based on
a list of URLs. LaDue's article is a bit dated and probably
too rash — the product has definitely improved since the
time of the judgement. But his drastic comments are in-
dicative of shortcomings of all products currently on the
market. Many of the general inadequacies common to
most of these security products are discussed in the next
subsection.

16-12

The product does not have antivirus protection; a sep-
arate tool is needed.

An interesting feature — once again, at least on paper,
— is the SafeZone, which monitors the execution of a bi-
nary program. It is launched automatically on programs
that come from the net and it can be launched manually to
monitor a specific program. It stops a program from read-
ing or writing files, making network connections, writing
to the registry, or starting other programs. This works fine
except that, frankly, what useful programs can one run un-
der such constraints? This example illustrates a key con-
cept in security: usability versus security.

PC-cillin 6.07 Trend Micro advertises this product
as "all the protection you need to face the new In-
ternet frontier!" (http://www.antivirus.com/
pc-cillin/products .htm).

It is a typical example of new, emerging products. It is
primarily an antivirus program that doubles as a malicious
mobile code detector. As users become more aware of
the security problems inherent to Internet use, they realise
they need some form of protection. Companies see this
opportunity and jump on it by offering their own products.

PC-cillin looks like a pretty good antivirus product —
no tests were made of that use — but it is certainly lack-
ing as a personal protection tool from the hazards of the
Internet. Its single primary interface scans only incoming
mobile code, much the same way that an antivirus program
does. There are no facilities to protect from malicious files
from CDs or an intranet — unless, of course, they contain
viruses.

4.3 Shortcomings of COTS Desktop Secu-
rity Products

First, because they are based on a priori knowledge of ma-
licious code, they are unable to deal with unknown attacks.
This is clearly not an acceptable approach since attack-
ers will always be a step ahead of security tools. Fur-
thermore, because commercial products of this nature are
often rushed to delivery, they are quite error-prone. The
problem is similar to that of current antivirus utilities, but
more serious. It would be a full-time job for many users
just to keep up with the patches and, given that in most
cases the list of attacks must be updated manually, it is
easy to understand that this is not a promising long-term
solution. Future tools need to be able to detect suspicious
behaviour on their own. Some form of "intelligence" is
needed.

Second, they are usually quite complicated to use.
Even though the actual level of customisation is rather lim-
ited, an expert is required most of the time, just to keep the
product running without overpowering the routine activi-
ties of the system's users. Future tools need a powerful
specification language for expert users and a very simple
interface for everyday users. Then security administra-
tors can set very precise policies and average users can

be successfully protected without being annoyed by repet-
itive and often unspecific alert messages.

Along the same train of thought, the more tools one
has or needs, the more confusion will be brought to the
average user. For example, antivirus protection is a must
for an organisation, as is protection from malicious code
and intrusion. A perfect security tool would incorporate
protection against all of these aspects in one package, pro-
viding the user with a single, consistent interface for all
aspect of security.

Finally, most of the COTS Internet security products
do not even attempt to address the problem of security
in COTS obtained in executable format (e.g. MS Office,
Eudora, MapObjects, and so on), which probably still ac-
count for the vast majority of purchased COTS. A com-
plete tool obviously needs to be able to address the prob-
lems of binary programs.

5 Conclusion

Dynamic detection of malicious code has been outlined
in this paper. This is one of the best techniques to de-
tect malicious activity since it acts at the lowest possible
level: processor instructions. Thus the MaliCOTS team
concentrates its research effort on collaborative techniques
that include both static and dynamic tools. It is our hope
that dynamic analysis can complement static analysis and
overcome its shortcomings. This will ensure the rigorous
and efficient integration of COTS packages even when the
source code is not available.

One of our top priorities at this time is to formalise the
expression of security policy using a good specification
language to discriminate malicious activities from accept-
able behaviours. This requires very fine granularity. Cur-
rently, various design possibilities for a common security
specification language are being examined within our re-
search effort and a technology watch monitors commercial
solutions.

Our team welcomes international collaboration.

References

[1] R. Charpentier and M. Salois. MaliCOTS:Detecting
Malicious Code in COTS Sofware. In Commercial
Off-The-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS", Neuilly-sur-Seine
Cedex, France, Apr. 2000. NATO, RTO.

[2] S. Cho. Win32 Disassembler.
http://www.geocities.com/
SiliconValley/Foothills/4 078/,Oct.
1998.

[3] C. Colby. Semantics-based Program Analysis via
Symbolic Composition of Transfer Relations. PhD
thesis, Carnegie Mellon University, Aug. 1996.

16-13

[4] T. Inc. Samples.
http://www.tego.com/WebFrameSets/
OcxControlKit/Samples.htm, 2000.

[5] C. L. Jeffery. A Framework for Monitoring Program
Execution. Technical Report 93-21, University of
Arizona, July 1993. Department of Computer
Science, http: //ringer, cs .utsa.edu/
research/alamo/.

[6] C. C. W. Ko. Execution Monitoring of
Security-Critical Programs in a Distributed System
: A Specification Based Approach. PhD thesis,
University of California Davis, Aug. 1996.
Graduate Division.

[7] M. D. LaDue. A Collection of Increasingly Hostile
Applets, http://www.rstcorp.com/
hostile-applets/index.html.

[8] M. D. LaDue. The Rube Goldberg Approach to
Java Security, http : / /www. rstcorp. com/
hostile-applets/rube, html, 1998.

[9] G. McGraw and E. Feiten. Java Security Hotlist.
http://www.rstcorp.com/
j avasecurity/hotlist.html.

[10] F. McLain. ActiveX or How to Put Nuclear Bombs
in Web Pages, http:
//www.halcyon.com/mclain/ActiveX/,
1997.

[11] D. Neeley. How to Keep Out Bad Characters.
Security Management Online, 1998.
http://www.securitymanagement.com/
library/000599.html.

[12] N.Randall. Personal Security Suites, http:
//www8.zdnet.com/pcmag/features/
personal_security/_open.htm, 1997.

[13] R. M. Smith. ActiveX Security Check Page.
http://www.tiac.net/users/smiths/
acctroj/axcheck.htm, 1999.

17-1

The Ruthless Pursuit of the Truth about COTS

Dr. Norman F. Schneidewind
Naval Postgraduate School

2822 Racoon Trail
Pebble Beach

California, 93953, USA
Email: nschneid@nps.navy.mil

Abstract

We expose some of the truths about
COTS, discounting some exaggerated claims
about the applicability of COTS, particularly with
regard to using COTS in safety critical systems.
Although we agree that COTS has great potential
for reduced development and maintenance time
and cost, we feel that the advocates of COTS have
not adequately addressed some critical issues
concerning reliability, maintainability,
availability, requirements risk analysis, and cost.
Thus we illuminate these issues, suggesting
solutions in cases where solutions are feasible and
leaving some questions unanswered because it
appears that the questions cannot be answered due
to the inherent limitations of COTS. These
limitations are present because there is inadequate
visibility and documentation of COTS
components.

Introduction

In this paper we analyze three important
aspects of COTS software: 1) reliability,
maintainability, and availability; 2) requirements
risk assessment, using risk factors from the Space
Shuttle and modifying them for more general use;
and 3) cost framework. We are motivated to
address these issues because we feel that the
COTS community has not adequately addressed
some very important questions concerning the
applicability of COTS when used in a host
system. We define a host system as follows: it
contains both COTS and non-COTS software; the
latter is specific to the operational mission of the
organization; and the mission cannot be satisfied
entirely by COTS components. Our concerns are
reinforced by Kohl: "The most significant
challenges of V&V of COTS products has to do
with knowledge of the functionality, performance
and quality of these products. Because these
products tend to be developed for large,

commercial markets as opposed to being
developed to a specification for a single customer,
they tend to provide a variety of useful and
desirable features for the market that they are
targeted for, at the expense of the specific system
needs in which such products may be used.
Further, quality and reliability are sometimes not
considered critical when time-to-market is a
driving requirement. Thus, it is sometimes the
case that these COTS products contain features
and functionality that may not be fully known,
even to the vendor." [KOH99].

Many vendors produce products that are
not domain specific (e.g., network server) or have
limited functionality (e.g., mobile phone). In
contrast, many customers of COTS develop
systems that are domain specific (e.g., target
tracking system) and have great variability in
functionality (e.g., corporate information system).
This discussion takes the viewpoint of how the
customer can ensure the quality of COTS
components. In addition to direct quality
evaluation, we also consider requirements risk
analysis in a later section, which indirectly affects
quality. We must distinguish between using a non-
mission critical application like a spreadsheet
program to produce a budget and a mission
critical application like military strategic and
tactical operations. Whereas customers will
tolerate an occasional bug in the former, zero
tolerance is the rule in the latter. We emphasize
the latter because this is the arena where there are
major unresolved problems in the application of
COTS. Furthermore, COTS components may be
embedded in host systems. These components
must be reliable, maintainable, and available, and
must interoperate with the host system in order for
the customer to benefit from the advertised
advantages of lower development and
maintenance costs. Interestingly, when the claims
of COTS advantages are closely examined, one

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

17-2

finds that to a great extent these COTS
components consist of hardware and office
products, not mission critical software [CLE97].

Obviously, COTS components are different
from host components with respect to one or more
of the following attributes: source, development
paradigm, safety, reliability, maintainability,
availability, security, and other attributes.
However, the important question is whether they
should be treated differently when deciding to
deploy them for operational use; we suggest the
answer is no. We use reliability as an example to
justify our answer. In order to demonstrate its
reliability, a COTS component must pass the same
reliability evaluations as the host components,
otherwise the COTS components will be the
weakest link in the chain of components and will
be the determinant of software system reliability.
The challenge is that there will be less information
available for evaluating COTS components than
for host components but this does not mean we
should despair and do nothing. Actually, there is a
lot we can do even in the absence of
documentation on COTS components because the
customer will have information about how COTS
components are to be used in the host system. To
illustrate our approach, we will consider the
reliability, maintainability, and availability
(RMA) of COTS components as used in host
systems.

In addition, COTS suppliers should consider
increasing visibility into their products to assist
customers in determining the components' fitness
for use in a particular application. We offer ideas
about information that would be useful to
customers and what vendors might do to provide
it.

This paper is organized as follows: reliability,
maintainability, availability, requirements risk
analysis, improved visibility into COTS, cost as
the universal COTS metric, and conclusions.

Reliability
There are some intriguing questions

concerning how to evaluate the reliability of
COTS components that we will attempt to answer
[SCH991]. Among these are the following: How
do we estimate the reliability of COTS when there
is no data available from the vendor? How do we
estimate the reliability of COTS when it is
embedded in a host system? How do we revise
our reliability estimates once COTS has been

upgraded? A fundamental problem arises in
assessing the reliability of a software component:
a software component will exhibit different
reliability performance in different applications
and environments. A COTS component may have
a favorable reliability rating when operated in
isolation but a poor one when integrated in a host
system. What is needed is the operational profile
of COTS components as integrated into the host
system in order to provide some clues as to how to
test COTS components. We will assume the
worst-case situation that documentation and
source code are not available. Thus, inspection
would not be feasible and we would have to rely
exclusively on testing and reliability calculations
derived from test data to assess reliability.

The operational profile identifies the
criticality of components and their duration and
frequency of use. Establishing the operational
profile leads to a strategy of what to test, with
what intensity, and for what duration. We must
recognize that a COTS component must be tested
with respect to both its operational profile and the
operational profile of the host system of which it
is a part. The COTS component would be treated
like a black box for testing purposes similar to a
host component being delivered by design to
testing but without the documentation. Testing the
COTS components according to these operational
profiles will produce failure data that can be used
for two purposes: 1) make an empirical reliability
assessment of COTS components in the
environment of the host system and 2) provide
data for estimating the parameters of a reliability
model for predicting future reliability [SCH97].

A comprehensive software reliability
engineering process is described in [ANS93]. As
pointed out by Voas, black box and operational
testing alone may be inadequate [VOA98]. In
addition, he advocates using fault injection to
corrupt one component (e.g., COTS component)
to see how well other components (e.g., the host
system) can tolerate the failed component. While
this approach can identify problems in the
software, it cannot fix them without
documentation. Thus there must be a contract with
the vendor that allows the customer to report
problems to the vendor for their resolution.
Unfortunately, from the customer's standpoint,
vendors are unlikely to agree to such an
arrangement unless the customer has significant
leverage such as the Federal Government. In the

17-3

case where documentation is available, it would
be subjected to a formal inspection of its
understandability and usability. If the
documentation satisfies these criteria, it would be
used as an aid to inspecting any source code that
might be available. Next we consider COTS
maintainability issues.

Maintainability

In the case of maintainability, there are more
intriguing issues. Suppose a problem occurs in a
host system. Is the problem in COTS or in the
host software? Suppose it is caused by an
interaction of the two. The customer knows the
problem has occurred, but does not know how to
fix it if there is no documentation. The vendor, not
being on site, does not know the problem has
occurred. Even the vendor may not know how to
fix the problem if the source of the problem is the
host software or an interaction between it and
COTS components. In addition, suppose the
customer needs to upgrade the host software and
this upgrade is incompatible with the COTS
components. Or, conversely, the vendor upgrades
COTS components and they are no longer
compatible with the host software. Lastly, suppose
there are no incompatibilities, but the customer
may be forced to install the latest COTS
components upgrade in order to continue to
receive support from the vendor. None of these
situations can be resolved without either the
customer having documentation to aid in fixing
the problem, or a contract with the vendor of the
type mentioned above. As in the case of
reliability, when neither of these remedies is
available, problems can only be identified but they
cannot be fixed. Thus the software cannot be
maintained. An additional factor that impacts both
reliability and maintainability is that the vendor is
unlikely to continue to support the software if the
customer modifies it. Thus the situation
degenerates to one in which the customer is totally
dependent on vendor support to achieve reliability
and maintainability objectives. This may be
satisfactory for office product applications but it is
unsatisfactory for mission critical applications.
Next we consider the COTS availability issues.

Availability

High availability is crucial to the success of a
mission critical system. What will be system

availability using COTS? To attempt to answer
this question, it is useful to consider hardware as a
frame of reference. The ultimate COTS is
hardware; it has interchangeable and replacement
components. Maintenance costs are kept low and
availability is kept high by replacing failed
components with identical components. Unlike
hardware, availability cannot be kept high by
"replacing" the software. A failed component
cannot be replaced because the replacement
component would have the same fault as the failed
component. Fault tolerant software is a possibility
but it has had limited success. We see that
availability is a function of reliability and
maintainability as related by the formula:

Availability = MTTF/(MTTF+MTTR) =

1/1+(MTTR/MTTF),

where MTTF is mean time to failure and MTTR is
mean time to repair. MTTF is related to reliability
and MTTR is related to maintainability. For high
availability, we want to drive time to failure to
infinity and repair time to zero. However, we
have seen from the discussion of reliability and
maintainability that achieving these objectives is
problematic. Thus to achieve high availability,
either the COTS software must be of high intrinsic
reliability - probably a naive assumption - or
there must be in place a strong vendor
maintenance program (this assumption may be
equally naive). Next we consider COTS visibility
issues.

Improved Visibility into COTS

Major drawbacks of including COTS in a
software system are the lack of visibility into how
the COTS components were developed and an
incomplete understanding of the components'
behavioral properties [SCH991]. Without this
information, it is difficult to assess COTS
components to determine their fitness for a
particular application. As suggested by McDermid
in [TAL98], a partial solution might be for COTS
vendors to identify a set of behavioral properties
that should be satisfied by the software, and then
certifying that those properties are satisfied. For
instance, an operating system supplier might
certify that a lower-priority task does not interrupt
a higher priority task as long as the higher priority
task holds the resources required to continue
processing. COTS vendors might also include the
specifications of those components as well as

17-4

details of verification activities in which those
specifications had been used to show that specific
behavioral properties of the software were
satisfied. For instance, an effort in progress at the
Jet Propulsion Laboratory [JPL98] involves
developing libraries of reusable specifications for
spacecraft software components using the PVS
specification language [SRI98]. The developers of
the libraries work cooperatively with anticipated
customers to develop the specifications and
identify those properties that the components
should satisfy. As they develop the libraries, the
component developers use the PVS theorem
proverb to show that the behavioral properties are
satisfied by the specification. These proofs are
intended to be distributed with the libraries. When
customers modify the libraries, perhaps to
customize them for a new mission, they will be
able to use the accompanying proofs as a basis for
showing that the modified specification exhibits
the desired behavioral properties. Similarly,
commercial vendors could work with existing and
potential customers through user groups to
discover those behavioral properties in which
users are the most interested, and then work to
certify that their components satisfy those
properties. Next we present a methodology for
analyzing requirements risk when COTS is
embedded in a host system.

Requirements Risk Analysis

In this section we first describe the Shuttle
risk management process. Then we consider how
it could be modified to accommodate the use of
COTS. In providing this analysis, it should not be
inferred that we necessarily advocate the use of
COTS on the Shuttle or on any other safety
critical system. Whether COTS should be
employed would depend upon many
environmental and application factors. Rather, our
goal is to investigate whether the Shuttle risk
analysis process is adaptable to the use of COTS.

Shuttle Risk Management Process

One of the software development and
maintenance problems of the NASA Space Shuttle
Flight Software organization is to evaluate the risk
of implementing requirements changes. These
changes can affect the reliability, availability and
maintainability of the software. To assess the risk
of change, a number of risk factors are used. The
risk factors were identified by agreement between

NASA and the development contractor based on
assumptions about the risk involved in making
changes to the software. This formal process is
called a risk assessment. No requirements change
is approved by the change control board without
an accompanying risk assessment. During risk
assessment, the development contractor will
attempt to answer such questions as: "Is this
change highly complex relative to other software
changes that have been made on the Shuttle?" If
this were the case, a high-risk value would be
assigned for the complexity criterion. To date this
qualitative risk assessment has proven useful for
identifying possible risky requirements changes
or, conversely, providing assurance that there are
no unacceptable risks in making a change.

The following are the definitions of the risk
factors, where we have placed the factors into
categories and have provided our interpretation of
the question the factor is designed to answer. In
addition, we added the risk factor requirements
specifications techniques because we feel that this
one could represent the highest reliability risk of
all the factors if a technique leads to
misunderstanding of the intent of the
requirements. For each of the risk factors, we
analyze its appropriateness for COTS. As you will
see, this analysis not only determines the
adaptability of the process to COTS, but also
exposes some serious issues in the employment of
COTS in any system. For example, the Shuttle
risk process is all about assessing the risk of
requirements changes. In COTS, we would not
want to attempt changes because we don't have
the necessary source code and other
documentation. Furthermore, if we did make a
change, it could invalidate our software license.
This situation illuminates a serious deficiency in
using COTS. Therefore, our only recourse, if
feasible, is to change the host software to reflect
the change. In other words, COTS has to be used
"as is" in our system. Thus, in what follows, the
risk factors are a function of the change in the
host software and how the change relates to and
can be integrated with COTS.

In order to modify the Shuttle risk process to
make it applicable to the use of COTS, we must
change the software change metric from lines of
code to components. In addition, we must change
our view of the software from a set of individual
instructions to a set of interconnected
components. Otherwise, it would make no sense

17-5

to talk about number of lines of code to be
changed in the host software when we only have
visibility of COTS at the component level. We
will also assume an object oriented development
and maintenance paradigm.

Requirements Change Risk Factors

The following are the definitions of the
Shuttle risk factors modified to accommodate the
use of COTS, where, as mentioned previously,
only host software components can be changed,
but in making the changes, the relationship with
COTS components must be considered. If the
answer to a yes/no question is "yes", it means this
is a high-risk change with respect to the given
factor. If the answer to a question that requires an
estimate is an anomalous value, it means this is a
high-risk change with respect to the given factor.
When a change to a component is mentioned
below, it will be understood to be a change to host
software.

Complexity Factors

o Qualitative assessment of complexity of
change (e.g., very complex)

- Is this change highly complex relative to
other software changes that have been made
on the system? What are the interfaces
between the host components and COTS
components that are affected by the change?
Is the change more complex for the host
system than for the host software alone?

o Number of modifications or iterations on the
proposed change

- How many times must the change be
modified or presented to the Change Control
Board (CCB) before it is approved?

Size Factors

o Number and types of components affected by
the change

- How many components and types of
components must be changed to implement
the requirements change?

o Size of software components that are affected
by the change

- How many component objects are affected
by the change?

Criticality of Change Factors

o Whether the software change is on a nominal or
off-nominal component path (i.e., exception
condition)

- Will a change to an off-nominal component
path affect the reliability of the software?

o Operational phases affected by the changed
component path (e.g., ascent, orbit, and
landing)

- Will a change to a critical phase of the
mission (e.g., ascent and landing) affect the
reliability of the software?

Locality of Change Factors

o The area of the affected change (i.e., critical
area such as a component path for a mission
abort sequence)

- Will the change affect objects of
components that are critical to mission
success?

o Recent changes to components in the area
affected by the requirements change

- Will successive changes to the components
in a given area lead to non-maintainable code?

o New or existing components that are affected

- Will a change to new components (i.e., a
change on top of a change) lead to non-
maintainable software?

o Number of system or hardware failures that
would have to occur before the components
that implement the requirement are executed

- Will the change be on a component path
where only a small number of system or
hardware failures would have to occur before
the changed components are executed ?

Requirements Issues and Function Factors

17-6

Number and types of other requirements
affected by the given requirement change
(requirements issues)

- Are there other requirements that are going
to be affected by this change? If so, these
requirements will have to be resolved before
implementing the given requirement.

o Possible conflicts among
changes (requirements issues)

requirements

- Will this change conflict with other
requirements changes (e.g., lead to conflicting
operational scenarios)

o Number of principal software functions and
components affected by the change

- How many major software functions and
components will have to be changed to make
the given change?

Performance Factors

o Amount of memory required to implement the
change

- Will the change use memory to the extent
that other functions and components will not
have sufficient memory to operate
effectively?

o Effect on CPU performance

- Will the change use CPU cycles to the extent
that other functions and components will not
have sufficient CPU capacity to operate
effectively?

Personnel Resources Factors

o Number of inspections of components and
objects required to approve the change

- Will the number and duration of inspections
be significant?

o Manpower required to implement the change

- Will the manpower required to implement
the software change be significant?

o Manpower required to verify and validate the
correctness of the change

- Will the manpower required to verify and
validate the software change be significant?

Tools Factor

o Software tools creation or modification
required to implement the change

- Will the implementation of the change
require the development and testing of new
tools - for example the development of
component and object testing tools?

o Requirements specifications techniques (e.g.,
flow diagram, state chart, pseudo code, control
diagram).

- Will the requirements specification method
be difficult to understand and translate into
components and objects?

As an example, Table 1 shows a partial list of the
risk factors compiled for the for the Shuttle Three
Engine Out Auto Contingency and Single Global
Positioning System requirements changes.

Table 1
Change SLOC Complexit Criticality Number of
Request Changed y of Change Principal
Number Rating of Functions

Change Affected
107734 1933 4 3 27

Number of Number of Number of Manpower
Modifications Requirements Inspections Required

Of Change Issues Required to Make
Request Change

7 238 12 209.3 MW

Discussion

Although we believe we have made a
reasonable translation from a code oriented

requirements risk analysis to a component
oriented one, it is not clear that the resultant risk
model would be entirely usable because no matter
how we define the software entities of interest, we
still do not have equal visibility of the host

17-7

software and COTS. We suggest this is a
fundamental problem that has not been solved by
COTS advocates, particularly for safety critical
systems. Next we present a framework for
identifying and analyzing the cost of COTS.

Cost as the Universal COTS Metric

We focus on factors that the user should
consider when deciding whether to use COTS
software [SCH992]. We take the approach of
using the common denominator cost. This is done
for two reasons: first, cost is obviously of interest
in making such decisions and second a single
metric - cost in dollars - can be used for
evaluating the pros and cons of using COTS. The
reason is that various software system attributes,
like acquisition cost and availability (i.e., the
percentage of scheduled operating time that the
system is available for use), are non-
commensurate quantities. That is, we cannot relate
quantitatively "a low acquisition cost" with "high
availability". These units are neither additive nor
multiplicative. However, if it were possible to
translate availability into either a cost gain or loss
for COTS software, we could operate on these
metrics mathematically. Naturally, in addition to
cost, the user application is key in making the
decision. Thus one could develop a matrix where
one dimension is application and the other
dimension is the various cost elements. We show
how cost elements can be identified and how cost
comparisons can be made over the life of the
software. Obviously, identifying the costs would
not be easy. The user would have to do a lot of
work to set up the decision matrix but once it was
constructed, it would be a significant tool in the
evaluation of COTS. Furthermore, even if all the
required data cannot be collected, having a
framework that defines software system attributes
would serve as a user guide for factors to consider
when making the decision about whether to use
COTS software or in-house developed software.
Note that host software could be developed either
in-house or under contract. If the former, the in-
house cost element below apply to host software.

Certainly, different applications would have
varying degrees of relationships with the cost
elements. For example, flight control software
would have a stronger relationship with the cost of
unavailability than a spreadsheet application.
Conversely, the latter would have a stronger
relationship with the cost of inadequacy of tool

features than the former. Due to the difficulty of
identifying specific COTS-related costs, our initial
approach is to identify cost elements on the
ordinal scale. Thus, the first version of the
decision matrix would involve ordinal scale
metrics (i.e., the cost of unreliability is more
important for flight control software than for
spreadsheet applications). As the field of COTS
analysis matures and as additional data is
collected about the cost of using COTS, we will
be able to refine our metrics to the ratio scale
(e.g., the cost of unreliability in a host system is
two times that in a commercial COTS system).

The cost elements for comparing COTS
software with in-house software are identified
below. This list is not exhaustive; its purpose is to
illustrate the approach. These elements apply
whether we are comparing a system comprised of
all COTS components with all in-house
components or comparing only a subset of COTS
components with corresponding in-house
components. Explanatory comments are made
where necessary. Mean values are used for some
quantities in the initial framework. This is the case
because it will be a challenge to collect any data
for some applications. Therefore, the initial
framework should not be overly complex.
Variance and statistical distribution information
could be included as enhancements if the initial
framework proves successful.

Cost Elements

Cc(j)
= Cost of acquiring COTS software in year j.

Cj(j) = Cost of developing in-house software in
yearj.

Uc(j) = Cost of upgrading COTS software in year

j-

Uj(j) = Cost of upgrading in-house software in
yearj.

P(j) = Cost of personnel who use the software
system in year j. This quantity represents the
value to the customer of using the software
system.

Mc(j) = Cost per unit time of repairing a fault in
COTS software in year j. This is the cost of
customer time involved in resolving a problem
with the vendor.

17-

M;(j) = Cost per unit time of repairing a fault in
in-house software in year j.

Rc(j) = Mean time of repairing a fault that causes a
failure in COTS software in year j. This is the
average time that the user spends in resolving a
problem with the vendor.

Rj(j) = Mean time of repairing a fault that causes a
failure in in-house software in year j.

T(j) = Scheduled operating time for the software
system in year j.

Ac(j) = Availability of software system that uses
COTS software in year j.

Aj(j) = Availability of software system that uses
software developed in-house in year j.

These quantities are the fractions of T(j) that the
software system is available for use.

Fc(j) = Failure rate of COTS software in year j.

F;(j) = Failure rate of in-house software in year j.

These quantities are the number of failures per
year that cause loss of productivity and
availability of the software system.

In some applications, some or all of the
above quantities may be known or assumed to be
constant over the life of the software system.
Using the above cost elements, we derive the
equations for the annual costs of the two systems
and the difference in these costs. In the cost
difference calculations that follow, a positive
quantity is favorable to in-house development and
a negative quantity is favorable to COTS.

Cost of Acquiring Software

Difference in annual cost = Cc(j) - C;(j) (1)

Cost of Upgrading Software

Difference in annual cost = Uc(j) - Uj(j) (2)

Cost of Software being Unavailable for Use

Annual cost of COTS software being unavailable
foruse = (l-AcG))* PG).

Annual cost of the in-house software being
unavailable for use = (1-Aj(j)) * PG).

Difference in annual cost =
PG^A^-AeG»

Cost of Repairing Software

(3)

Average annual cost of repairing failed COTS
software = FCG) * TG) * RcG) * MCG).

Average annual cost of repairing failed in-house
software = FJG) * TQ) * Rß) * Mtf).

Difference in annual cost =

TG) * ((FcG) * R<(J) * MeG)) - ((FiG) * RiG) *
MiG)) (4)

Then, TCj, total difference in cost in year j, is the
sum of (1), (2), (3), and (4). Because there is the
opportunity to invest funds in alternate projects,
costs in different years are not equivalent (i.e.,
funds available today have more value than an
equal amount in the future because they could be
invested today and earn a future return).
Therefore, a stream of costs over the life of the
software for n years must be discounted by k, the
rate of return on alternate use of funds. Thus the
total discounted cost differential between COTS
software and in-house software is:

E°TCj/(l + k)j

In this initial formulation, we have not
included possible differences in functionality
between the two approaches. However, a
reasonable assumption is that COTS software
would not be considered unless it could provide
minimum functionality to satisfy user
requirements. Thus, a typical decision for the user
is whether it is worth the additional life cycle
costs to develop an in-house software system with
all the desirable attributes.

Conclusions

The decision to employ COTS on mission
critical systems should not be based on
development cost alone. Rather, costs should be
evaluated on a total life cycle basis and RMA
should be evaluated in a system context (i.e.,

17-9

COTS components embedded in a host system).
COTS suppliers should also consider making
available more detailed information regarding the
behavior of their systems, and certifying that their
components satisfy a specified set of behavioral
properties. In addition, a formal risk assessment of
requirements should be performed taking into
account the characteristics of host system
environments.

References

[ANS93] Recommended Practice for Software
Reliability, R-013-1992, American National
Standards Institute/American Institute of
Aeronautics and Astronautics, 370 L'Enfant
Promenade, SW, Washington, DC 20024, 1993.

[CLE97] Clemins, Archie, "IT-21: The Path to
Information Superiority." CHIPS Jul 1997,
http://www.chips.navy.mil/chips/archives/97 jul/f
ile.htm, p. 1.

[JPL98] "Reusable Libraries of Formal
Specifications", NASA Formal Methods web site,
http://eis.jpl.nasa.gov/quality/Formal Methods/lib
rary.html, 1998.

[KOH99] Ronald J. Kohl, "V&V of COTS
Dormant Code: Challenges and Issues",
Proceedings of the First Workshop on Ensuring
Successful COTS Development, 21st International
Conference on Software Engineering, Los
Angeles, California, May 22nd, 1999, 2 pages.

[SCH97] Norman F. SchneidewÜKL. "Reliability
Modeling for Safety Critical Software", IEEE
Transactions on Reliability, Vol. 46, No.l, March
1997,pp.88-98.

[SCH991] Norman F. Schneidewind and Allen P.
Nikora, "Issues and Methods for Assessing COTS
Reliability, Maintainability, and Availability",
Proceedings of the First Workshop on Ensuring
Successful COTS Development, 21st International
Conference on Software Engineering, Los
Angeles, California, May 22nd, 1999,4 pages.

[SCH992] Norman F. Schneidewind, "Cost
Framework for COTS Evaluation", Proceedings
of COMPSAC 99, Phoenix, AZ, 27 October
1999, pp. 100-101.

[SRI98] "The PVS Specification and Verification
System", SRI International Computer Science
Laboratory, http://www.csl.sri.com/sri-csl-
pvs.html, 1998.

[TAL98] Nancy Talbert, "The Cost of COTS",
IEEE Computer, Vol. 31, No. 6, June 1998, pp.
46-52.

[VOA98] Jeffrey M. Voas, "Certifying Off-the-
Shelf Software Components", IEEE Computer,
Vol. 31, No. 6, June 1998, pp. 53-59.

18-

Determining the Suitability of COTS for Mission Critical Applications

Ronald J. Kohl

AverStar, Inc.
3581 Mar Lu Ridge Road

Jefferson, MD, USA, 21755-7724
kohl@averstar.com

Abstract

Commercial Off The Shelf (COTS) products are being
considered for inclusion in ever more complex and
critical systems. There are known advantages and risks
[1, 4, 5] for considering the use of COTS in complex
systems. Yet, given the rigorous needs of Mission
Critical systems or subsystems, there have begun to
emerge concerns and risks about the suitability of COTS
for such applications. This paper identifies some of the
characteristics of Mission Critical systems (e.g.
reliability, availability, correct functionality) that makes
the selection process of COTS products (hardware,
software, subsystems, etc) an increasingly important
factor in total system lifecycle phases (design,
development, acceptance, operations/maintenance and
disposal). This paper presents a set of risk areas related
to the use of COTS, in general, and specifically for
Mission Critical systems, that would assist both the
acquisition community as well as the
development/integration community in determining the
suitability of using COTS in such Mission Critical
systems. Then, a set of risk mitigation approaches is
identified; some of which have been applied to certain
National Aeronautics and Space Administration (NASA)
programs. Lastly, a set of steps that could lead to the
establishment of a set of procedures, and perhaps even
an enterprise policy on if and/or when COTS products
are suitable for certain Mission Critical applications.

1 Introduction

Mission Critical System characteristics such as
reliability, safety, availability, maintainability, and
certification tend to have significant influence on
whether or not COTS should be considered for a given
application. On the other hand, COTS products
traditionally have not been built for use in such Mission
Critical applications. This systems needs versus
intended product operational envelope poses one of the
major challenges to using COTS products in such
Mission Critical systems. Once the suitability of COTS
has been determined, then it is possible that additional
requirements may be placed on the product and/or the
product's vendor prior to inclusion in such Mission
Critical applications. Or it may be necessary to consider
alternative products or approaches if a given vendor is
unwilling to comply with Mission Critical
product/system requirements. Further, it is possible that

certain system requirements and expectations may need
to be modified because of the inclusion of COTS
products into that system. As COTS products continue
to be considered as candidates for inclusion within
Mission Critical systems, there will likely be additional
risk factors that will be identified, and there will likely
be improvements to the impacts of known risks to
existing COTS risk factors. The continued pursuit and
dissemination of such COTS risk factors will influence
how both acquirers and suppliers decide if and/or when
to use COTS products. Ongoing monitoring of this
technology area, including both benefits attained and
risks identified, seems to be warranted. In addition,
validation of the mitigation techniques proposed in this
paper is warranted, along with collecting lessons learned
from projects, which may be experiencing such impacts,
and those that may have identified additional mitigation
techniques.

2 Background

Trends in both government and industry are to use
COTS products more and more because there are
recognized advantages: reduced development cost, large
user base, reduced maintenance, etc. This trend seems to
be increasing with no end in sight.

Yet, Mission Critical systems and applications continue
to have ever more stringent and rigorous requirements
for certain characteristics of the system or application.
And there is every reason to expect that such Mission
Critical systems will increase in number, complexity,
and stringency.

Determining the suitability of any COTS products for
such applications and systems requires efforts and
analyses that may not be fully appreciated, understood,
or implemented in many organizations. This is true of
acquiring organizations as well as of supplying
organizations.

Further more, there can be non-engineering pressures to
use COTS products (Department of Defense's (DoD)
Acquisition Reform, U.S. Government's legislation on
Information Technology Management Reform Act
(Clinger-Cohen), DoD's transition out of Mil-Stds to
commercial standards (Perry memo), etc).

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

18-2

3 What are the differences in Mission
Critical systems?

There is no agreed upon definition of Mission Critical
systems. The intent is that such Mission Critical systems
are more important than other systems, based on the
perspective of a set of stakeholders. The problem is that
more important tends to be an ill-defined characteristic.
For the purposes of this paper, Mission Critical System
is defined as "any system critical to success of an
enterprise or a project". Mission critical systems have
more rigorous and stringent requirements than less
critical systems. These requirements usually have to do
with quality and performance characteristics.
Requirements in the area of availability, reliability,
security, and safety are usually of higher priority for
Mission Critical systems, and pose greater impacts on
the subsystems, components, and elements of such
systems. Financial systems, such as International Bank
funds transfer, may have less complex functionality but
the loss of availability, even for a few seconds, can have
significant mission impacts to entire enterprises.
Military facilities have security requirements that are
critical to the mission of such secured facilities and
enterprises. And human-based space programs have
safety requirements that cannot be compromised.

In addition, Mission Critical systems tend to have more
demanding performance requirements. It is not unusual
for Mission Critical systems to have real-time,
throughput, access, and response requirements that are
far more difficult to satisfy and verify, especially via
COTS products. Chemical processing plants have the
need to monitor sensors many times per second, to
ensure safety. Space propulsion systems have a need to
monitor sensors and command effectors, many times per
second, to correctly control launch vehicles and orbiting
platforms. Security systems need to access restricted
and protected databases in microseconds, and to
disseminate the information from those accesses, over
large networks in a matter of seconds, or less.

One last area of relevance to Mission Critical systems is
the need for more stringent Verification and Validation
efforts and possibly even product certification. NASA's
Space Shuttle Program (SSP) requires software
certification by both the developer and the independent
verifier. Security systems also require product
certification.

The above is intended to provide examples of Mission
Critical requirements that are either unique to or more
critical, none of which can be compromised, no matter
what the solution's composition.

4 What are the risks of using COTS
products in Mission Critical systems?

There is a growing body of information [1,4, 5] that has
identified risk areas when considering COTS products.
These include functionality of the product, operational
utilization, quality and reliability, maintenance costs,
product volatility, and vendor viability.

These risk areas need to be assessed, and when
appropriate, mitigated no matter what type of system that
contains them.

However, Mission Critical places even higher demands
on COTS products and vendors. Some examples are:

It may be undesirable or even unacceptable for a
COTS product to contain Dormant Code [3], the
COTS product functionality for which there is no
system requirement. Dormant Code can have
technical, cost, schedule, and even legal
ramifications that might disqualify a given COTS
product.

It may be mandatory to have insights into the
product development processes to understand the
likelihood of a quality product upon delivery. It
may even be an acquisition requirement for all
suppliers (from prime to subcontractors to vendors)
to be ISO 9000 or SEI CMM Level 3.

It may be necessary to have access to source code,
in order to understand functionality and testability
of a given COTS product.

For long-lived systems, it may be necessary to have
access to product information (source code, design
documents, test scripts, etc) since a given version of
a product may need to be operational for many
years. This may require such approaches as source
code escrow or third party maintenance
agreements.

Vendors may be required to produce or obtain
certification of their COTS product, which often
incurs legal and financial implications.

5 An overview of what should be done

The first step is to fully understand the expectations,
desires and characteristics of the system or application to
be developed, and to determine the priority of each of
these needs. This will support the establishment of a
critical shopping list as the system supplier ventures into
the commercial component marketplace.

18-3

Almost in parallel, an understanding and insight into the
availability and characteristics of the COTS products
that could be solution candidates, needs to begin to be
developed. Furthermore, insights into vendor business
viability and reputation need to be captured and then
monitored.

Then there must be an iterative process of requirements
specification and candidate COTS solution evaluations.
As systems requirements mature and as COTS product
knowledge increases and improves, it will likely be
necessary to revisit the matches and mismatches between
requirements and COTS capabilities.

Additionally, if system acceptance requirements such as
Independent Verification and Validation or Operational
Certification are required, then determining the ability of
COTS products, and their vendors to undergo the rigors
of complying with such requirements, becomes a
significant factor in the earliest phases of the system's
lifecycle.

6 Specifically, what are the next steps?

1. Ensure that Mission Critical systems are not over
specified. Be sure that only those components and
subsystems of a given system that need to be very
important are subject to the appropriate and more
stringent Mission Critical requirements. As systems
requirements mature and evolve, it is critical that
these requirements be continually compared against
COTS product capabilities.

2. Determine the capabilities of COTS products, and
where appropriate the viability of their vendors.
This must be performed early and often. It could be
necessary to establish a commercial product market
watch role to ensure that the COTS marketplace, the
vendors in that marketplace, and the products
produced by those vendors meet the system
requirements.

3. Understand the operational profiles of the system to
ensure that any operational concepts for COTS
products, as envisioned by the vendor, are consistent
with the operational profiles of the end system. This
can be a major area for significant disconnect if not
addressed early and revisited often.

4. Determine if there are additional approaches to
determine the compliance of COTS products with
Mission Critical requirements. Such approaches as
additional testing, vendor certification, and third
party product certification may be required.

5. Establish positive relationships with the COTS
vendors to promote good business dealings. Such
positive business relationships can ease or improve
negotiations with COTS vendors, where
appropriate, for access to product and process
information not normally provided by such vendors
(they may not necessarily say no!)

6. Understand alternative COTS products. This
requires knowledge of the marketplace, the vendors
and products in that marketplace and the products
that are emerging into the marketplace. By knowing
the full range of candidate solution components,
there is reduced risk that the final solution will
satisfy the full spectrum of systems requirements.

7 An example

The United State's NASA SSP recently selected a
commercial GPS system (a military version of a
commercial GPS system) to replace the onboard
TACANs for navigation functionality. A test/acceptance
program was implemented, including test flights onboard
the Space Shuttle Orbiter. A respected vendor was
selected from candidates and SSP began to perform a set
of analyses and tests to validate the capabilities and
quality of this product. In spite of what was considered
the correct processes to satisfy SSP's expectations of this
GPS subsystem, an on-orbit problem occurred during the
first test flight on Shuttle Mission STS-91, in 1999 [2].

The nature of the problem lied in an interface between
the Onboard Flight Software (FSW) and the GPS
Receiver subsystem. Certain problems, not fully
understood by the SSP, manifested themselves during
STS-91, leading to Nav state divergence that eventually
manifested itself in loss of communications between the
Orbiter and the ground. As a consequence of this
problem, NASA has reverted to the TACANs, has
improved the interface between the FSW and the GPS
subsystem (more protection), and has implemented a
variety of more stringent analyses and process
improvements.

What were the assumptions that were made to support
the adoption of the commercial GPS receiver?

Reduced costs to SSP.

Leverage from military experience and testing of
GPS Receiver subsystem.

Adoption of new technology in reduced time
(obsolescence was a factor).

Intense Black Box testing would satisfy V&V
requirements and expose any hidden problems.

18-4

What were the risks/problems encounter?

Operating environment/profile was different.

Insufficient Systems Engineering across all aspects
of the GPS system, especially the firmware.

Process rigors of SSP were not satisfied by the GPS
Receiver vendor.

Lack of insight into GPS Receiver design.

Lack of GPS math model.

Declining vendor knowledge on the GPS Receiver
product line.

What were the lessons learned or changes made by SSP?

COTS/MOTS should not be considered a silver
bullet

Thorough Systems Engineering, early and often,
remains critically important.

Relying on Black Box testing has limits and may be
insufficient.

Lack of insights into product designs can lead to
unknown problems.

COTS vendors should be involved early and across
the lifecycle.

8 What future steps could be considered?

1. Validate the above set of practices by industry and
government practitioners.

which have yet to be identified. Further validation of the
practices suggested here and the emergence of new
practices will improve the ability of systems developers
to incorporate COTS products while still satisfying the
critical demands of large, complex systems.

References

[1] J. Clapp, A. Tabb, "A Management Guide to
Software Maintenance in COTS-Based Systems",
Mitre Corp, Mitre Paper MP 98B0000069, Nov.
1998.

[2] J. Hutchins, "Shuttle GPS Upgrade, COTS/MOTS
Issues and Lessons Learned", Proceedings, ATWG
Fall Conference, 1999.

[3] R. Kohl, "When Requirements are not isomorphic to
COTS Functionality: "'Dormant Code' within a
COTS product", Proceedings INCOSE Symposium,
July, 1998.

[4] D. Reifer, T. Ragan, G.E. Kalb, "COTS Software
Management: Taming the Beast".

[5] SEI, "COTS-Based Systems (CBS) Initiative", at
http://www.sei.cmu.edu/cbs/index.html.

2. Contact (survey, interview, etc) current programs
that have Mission Critical components and
determine if they are considering COTS products.
If they are, determine how they select COTS
products.

3. Contact researchers (industry, government, and
academia) to determine areas suitable for long term
study/analysis/research.

4. Maintain an ongoing monitoring of these practices
and the users of them, to reassess the validity of
them and to identify new practices for consideration.

9 Conclusions

The use of COTS products in Mission Critical systems is
an emerging trend, which requires sound engineering
practices. Not all of these practices are fully understood
or mature, yet. As the practices suggested in this paper
are implemented, they will be improved and new ones
will emerge. There is much to learn about effectively
using COTS products, across the total system lifecycle.
Moreover, there are additional risks and mitigation
techniques that affect Mission Critical systems, some of

19-1

Six Facets of the Open COTS Box

(March 2000)

Daniel H. Dumas
Certified Consultant IT Architect, Network Computing

IBM Belgium
Square Victoria Regina 1
B-1210 Brussels, Belgium

Summary
Although procurement of COTS software for
Defence applications has long included
evaluation in terms of the products' respect for
standards and norms, actual experience has often
revealed shortcomings in the ability to deploy
solutions based on these packages widely over a
period of time. We look here at what additional
factors need to be considered in order to make
the use of COTS software more likely to bring
continuing benefits over the life of an application
system. The six aspects that are considered in
the paper are:

Presentation interfaces
Release compatibility
Portability
Programming interfaces
Security interfaces
Management interfaces

Introduction
The advantages of using COTS software
packages and components are widely known and
appreciated, namely:
• Rapid availability (by definition: off the shelf)
• Lower initial costs (because fixed

development costs are spread over a wider
user population)

• Widespread and higher quality education
offerings (again because of the wide user
base)

In choosing a particular software package, an
organisation will also look to such factors as the

ability to use it on the platforms that are most
widely used within the organisation (including
possibly heterogeneous platforms), and the
breadth of applicability of the solution, to
understand the economies of scales and of skills
that can be realised. This touches upon factors
commonly referred to as the "openness" and the
perenniality of the solution.

Although procurement of these offerings for
Defence applications has long included
evaluation of how well they respect official
standards and norms, actual experience has often
revealed shortcomings in the ability to deploy
them widely even over a few years' time. We
may wonder, then, what additional factors need
to be considered in order to make the use of
COTS software more likely to bring continuing
benefits over the life of an application system.
We will consider here six facets of the definition
of "open software" that need to be taken into
account in evaluating COTS offerings. These
will be presented symbolically by looking at the
kind of information we might hope to find
written on the six sides of the cardboard box that
the COTS software is delivered in.

Six Facets that should be considered
in COTS software evaluation

Each of the six sides of the box that a COTS
software is typically delivered in can serve to
remind us of a separate, important aspect that
needs to be considered in evaluating the
software, in order best to ensure its long-term
applicability in a particular environment.

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

19-2

Those six aspects, that we will detail in the rest
of this paper, are the following:
• Presentation interfaces
• Release compatibility
• Portability
• Programming interfaces
• Security interfaces
• Management interfaces

Presentation interfaces
Let's consider the top of the box first - and with
it, the first thing that you see when you look into
a new software: the presentation interfaces.

This aspect, especially when we are dealing with
graphical interfaces, has an undeniable emotional
impact at the time of product selection.
Ergonomy of use in some cases may merit a
detailed and objective study, including how long
it takes to accomplish some benchmark series of
tasks, for both the inexperienced and the
experienced user. It remains, of course, difficult
to quantify to what degree evaluations are
conditioned by more subjective elements such as
the use of colour and graphical elements, and the
aesthetic elements of information layout.

The nature (and in particular, the complexity) of
the presentation interface can also have an
impact on performance in environments with
bandwidth or processor constraints. It is
appropriate that this be taken into consideration
at the time of evaluation, but this aspect is rarely
apparent in a demo or pilot environment, where
bandwith and processor capacity is typically
unconstrained.

But beyond considerations such as usability and
attractiveness, the choice of presentation
interfaces has a real impact on the ability for a
product to be used at various locations within
the organisation, and to integrate with various
other applications.

If a single type of user interface is used, an
approach that presents significant advantages is
to communicate to the user interface with a Web
Browser-supported data stream, such as HTML,

XML or client-side Java functionality. The Web
Browser, of course, has the distinct advantage of
running on multiple platforms.. It can also
connect to multiple servers simultaneously. This
allows easy passive integration, as well as active
integration via hyperlinks. Increasingly, as well,
it can be used to provide slightly different
presentation interfaces to users according to
their individual preferences, through the use of
style sheets.

An approach that goes further than this is to
support multiple user interfaces. Indeed, if
sufficient consideration is given, at the time of
application development, to the separation
between presentation functions and business
logic, the same application can be designed to
work indifferently with various interfaces. As
possible interfaces, we might imagine the
following:
• A non-graphical, or transactional, interface

to the server functions, via a specific
Application Programming Interface or a
Messaging interface

• A specific Client GUI (graphical user
interface)

• A standard Web Browser GUI
• An interface to portable devices such as

Personal Data Assistants, cell phones or
pagers

• An output interface such as print, e-mail,
pager or FAX

• A telephony user interface, which could be
touch-tone or voice activated

There are multiple approaches possible to
providing universal presentation interfaces. The
intelligence required in order to adapt the
presentation format to a particular device can
either be located in an intermediate server, or
transcoder, or can be built into the device itself,
based on standard datastreams that are defined
to be applicable for data transmissions to a wide
variety of devices. It is important to see which of
these approaches is adopted by a particular
software package, and to evaluate how the
approach fits in with the planned deployment of
various user interfaces within the organisation.

19-3

The idea of universal access to applications is
gaining credibility through recent advances in the
standardisation of separation between content
description and layout, based on the use of the
extensible Markup Language (XML - which, in
contrast to HTML, is not a markup language in
the sense of presentation layout, but a content
description language) and the extensible Style
Language (XSL) specifications.

Both the transcoding and the device-resident
style sheet approach can provide increased
flexibility for customisation of the presentation
interface. Typically, though, they will be used for
different types of applications.

The approach that will leave the greatest
flexibility for customisation of the look of the
presentation interface by individuals will be the
approach based on a style sheet selected at the
device. This will generally allow the user to
adjust the presentation interface without
requiring any modification to the business logic.
It's an approach that has advantages for the
editor of the software as well: it allows them to
avoid developing specific customisation
Application Programming Interfaces (API's), and
will reduce needs to provide access to source
code, with the accompanying negative impacts
that has on maintainability of code and on the
ability to protect intellectual capital and software
assets.

There are other types of applications where the
transcoder approach is more powerful, of
course: in cases where the datastreams are
non-standard or unstructured, for instance. One
application where use of this kind of service has
appeared recently is in providing multilingual
interfaces to a single-language application. The
transcoder in this case is used to accomplish
translation of text on-the-fly.

Release compatibility
Let's go back to the imaginary box that our
software has just been delivered in, and take a
look at the front side now. What kind of things

might we find there? Version X.Y.Z. New!
Improved! Bonus!: now includes product ABC
(demo version).

Questions we might ask upon seeing all this
include:
• Why the new release? (as well as: when was

the previous release? when is the next one
planned?)

• What statement of requirements motivated
the new function and improvements?

• How does the additional product included in
the package affect me and what
dependencies does it create?

COTS software is fundamentally oriented to a
mass market. New releases can serve a number
of purposes in this environment:
• They are a delivery mechanism for error

maintenance
• They are a mechanism to generate renewed

interest
• They incorporate new technology
• They allow adjustments in positioning

relative to competitive products, and to
products the vendor owns, has acquired, or
is forming marketing alliances with

Because market share is an important
consideration, COTS products typically try to
cover as large a spectrum of function as possible
- sometimes earning them the reputation of
"bloatware"! This inevitably results in their
containing features that are not strictly required
for a particular application. Additionally, and
more importantly, the focus very often turns to
rapid product cycles rather than to managed
change.

In this context, it is not infrequent to see
problem determination and the application of
fixes reduced to very minimalist proportions:
install the next release and hope your problem
goes away. The policy of maintenance for
releases for a particular COTS product certainly
merits investigation. Is corrective maintenance
available between releases? How can it be
delivered?

19-4

Release "churn" has a negative influence on the
length of availability and on the effective support
period of a release. How frequently do releases
change? Is this acceptable in terms of the period
foreseen to roll out a product to the various
users in the organisation?

Change management considerations apply not
only to the area of corrective maintenance, but
to the implementation of functions that have
been requested as part of the product
requirements process. Historically, input to the
requirements process has been restricted to a
small number of influential players. The advent
of the Internet is changing that in certain IBM
and Lotus laboratories, where requirements from
a much broader public of developers is solicited
during the product development cycle.

Eventually, even if hopefully not during the
initial rollout period, the organisation will
probably end up considering migration of users
from one release to another, or one version to
another, of any given COTS product. A number
of other important questions will inevitably arise
at that time: will the things that I have
customised or developed continue to work with
the new release (forward compatibility)? Will the
things that I was doing with the previous release
continue to work with both the new and the old
release if I perform them with the new release
(migration compatibility)? Will the fact of using
the new functions in the new release prevent me
from interoperating with users using the old
release (backward compatibility)? Is there some
way to configure so that compatibility is ensured
(e.g., disabling the use of the new functions or
new data formats until migration is complete)?
What needs to be done to move users from the
old release to the new release, and data from the
old release to the new release (migration
planning)?

Although forward compatibility is widely
practised, and backward compatibility is
sometimes possible, the ability to configure for
automatic backward compatibility is rarely
foreseen. These last considerations can however
be especially important in situations where

upgrade decisions are taken by independent
entities or distributed entities that need to
interoperate.

Obviously, these are all essential change
management considerations that need to be
understood before a given organisation leaps
into a new release. But when we consider the
question of release compatibility across
organisations, the question gains a new
dimension of complexity: Organisations
throughout the world are not marching in
lockstep. Different organisations are doing
different things at different times. No version
plan could ever be made that would make all of
a COTS supplier's customers happy.

Customers have to have the discipline to
navigate through releases, and have some
restraint to do version control. Industry on the
other hand, who too rarely make public
commitments to maintenance of a particular
release, could do better to provide maintenance
of prior versions over a fixed minimum number
of years. But this does not appear to be a
prevalent trend. I do have one COTS software
box that states: "Maintenance will be provided
until No maintenance will be provided after
that date". It just happens to be for IBM DOS
4.0!

New releases can also entail additional licensing
fees in addition to the unaccounted human costs
associated with the installation, configuration
and problem determination efforts required for
those new releases.

Portability
Moving on to the right side of the box, we might
see a text such as the following: "Requirements:
Windows 95 or 98, Intel Pentium 133MHZ or
greater with a minimum of 24MB, a Sound
Blaster compatible sound card and SVGA
graphics capability configured for at least
800X600 resolution." A number of questions
might typically come to mind:
• Will this software be applicable to my other

machines that work with other hardware

19-5

and/or other operating systems? Or will I at
least be able find the equivalent software
available for the other operating systems?

• Will this work with the new operating
system version (NT 4.0, Windows 2000,
etc.) that I am planning on installing (or that
I will be forced to install for some other
reason)?

• Will it interoperate with my other systems,
or with the systems in other organisations
that I need to deal with?

• How scalable is the package? Can it take
advantage of additional memory, additional
processors, additional machines or more
powerful machines, in order to accomplish
more work?

Portability has to do with flexibility across
technologies and over time. Whereas in the
considerations concerning release compatibility
we were considering constant platforms and
varying software, here we are considering
constant software and varying platforms.

We are looking to be able to deploy a
COTS-based solution widely and to keep it
viable over a number of years, eventually in a
number of different organisations that need to
work together. In order to accomplish that, we
need to accommodate changes in technology and
possible changes in hardware and operating
system vendor strategy. The rhythm of change of
hardware and operating system technology
continues "relentlessly" as well! It is therefore
desirable for the software to have a high level of
abstraction from the hardware and operating
system level.

Packages and components that we can
characterise in this way generally are designed to
run on multiple platforms today. The greater the
number of platforms supported, the greater the
effective openness of the software.

A major advance in portability has occurred
recently with the advent of the Java Virtual
Machine (JVM) and the standards that have
been defined in the area of application
development based on the Java language. The

JVM, implemented across various hardware and
operating system platforms, allows the same
"100% Java" byte codes to be executed in the
same way regardless of the instruction set and
services of the underlying physical machine and
operating system. The principle is: "Write once,
run everywhere". Though there is a certain
overhead associated with this additional level of
abstraction, techniques such as Java compilers
and Just-in-time Java compilation now allow
performance-critical processes to achieve results
that reasonably approach the performance of
native instruction-set execution for equivalent
functions. Java-based applications that
correspond to user performance expectations are
increasingly becoming available, and this trend
can be expected to continue

Portability is also affected by the architectural
approach followed by the solution. Functions
that risk being dependent on specific platforms
can be separated from the other functions, and
accessed via a protocol that allows the function
to be located elsewhere, in order to make the
overall functions accessible from a wider range
of platforms. This is essentially acknowledging
that portability is most important across the
machines that have the greatest number of
instances installed, while an organisation can
afford to have a limited number of servers for
which portability is not considered an issue
(typically, which have specific characteristics of
availability, performance, security, or other
criteria).

In terms of the communications protocols used
between the dissociated functional layers, we
can speak of synchronous protocols (requiring
both sender and receiver to be active and
accessible - e.g. as in the use of a TCP
socket-to-socket protocol) and asynchronous
protocols (allowing processing to go on with
guaranteed delivery at a later time, when the
receiving application is not active or accessible,
e.g. as in MQSeries message queuing). Both of
these types of communication are available on a
wide variety of platforms.

19-6

The various approaches to separation of
functional elements can be characterised in terms
of architectural tiers. Although there are
different approaches to counting the number of
tiers involved, the following should be generally
recognisable to everyone, at least in theoretical
terms. It is presented here in an order that
corresponds in general to an increasing order of
portability:
• Monolithic applications
• Two-tier client/server applications

(presentation function located in the client,
communicating to business logic in an
application server with integrated data store)

• Three-tier client/server applications
(presentation function located in the client,
communicating to business logic in an
application server, communicating in turn to
a data store server)

• Four-tier client/server applications
(simplified presentation function located in
the client ("light client" = browser), some
presentation logic located in the web server,
business logic in an application server,
communicating in turn to a data store server)

Separation of the function into additional tiers
increases their independence. It makes it easier
to "live with", and integrate to, those isolated
elements in the overall solution that are the most
difficult to change and that may have the
greatest need for stability and the least
portability.

Programming interfaces
On the back of the box, we often find some
information about the interfaces supported -
though perhaps not nearly in the detail needed in
order to put them into practice! In order to
extend a package or integrate it into a larger
context, programming is often necessary. How
easy - or difficult- will that be with the package
at hand?

Often this is a question of experience, and
Internet sites for developers and user forums can
provide interesting insights sometimes. But there
are certain interfaces that provide very high-level

function, and therefore can be used very
productively. An example of such high-level
function is that provided by such a specification
as Enterprise Java Beans (EJB). In addition to
the support for the Java language and Object
Request Broker for connection to the function of
other (eventually remote) objects, the EJB
container provides transactional functions (such
as management of the unit of work and scope of
recovery), session management functions (via
EJB Session Beans), persistent data store
functions (via EJB Entity Beans) and access
control functions.

We can distinguish multiple levels of openness in
the area of programming interfaces. We can find:
• Undocumented/unofficial interfaces (true

"proprietary interfaces")
• Official interfaces with limited programming

function (e.g. "wizards")
• Official interfaces in a proprietary

programming language (e.g. Oracle PL/SQL
script)

• Official interfaces in a non-proprietary
programming language (e.g. the use of
COBOL, C or Java)

The usefulness of the limited-function interfaces
is also conditioned by which middleware they
foresee. Sometimes a small door can open onto
a very large playing field! Take, for instance, a
communications interface to SMTP, to EDI, or
to MQSeries. Or take an SQL API, allowing the
relational database to serve as an integration
point to other processes, which might run
asynchronously, or synchronously through
triggers or through stored procedures.

The web browser, with its capability of being in
fact a client to multiple servers at the same time,
even on the same web page, and with its
programming capability, also provides an
integration point for applications, provided of
course that the application foresees using a web
browser interface.

For server-type implementations, additional
technical analysis of the limitations of the
interfaces can also be important. Such items as

19-7

their support of caching, buffer handling,
threading and connection pooling can have an
important impact on their scalability..

Security interfaces
On the left side of the box, it would be nice to
see something about how the package handles
security and access control. Does it provide and
use its own system? Does it build on the facilities
of the operating system?

Even the most mundane applications (for
instance - a word processor!) may have to
handle personal, restricted or confidential
information. Issues such as user identification,
authentication, access control, encryption and
non-repudiation must be addressed. At times,
the operating system can be counted on to
deliver these functions (when, for instance, it is a
question of providing access control for
information located on the machine). At other
times, certain aspects need to be handled on an
application level (for instance for data that needs
to be transported, that needs to be digitally
signed, that needs additional granularity of
access within a given file, etc.).

The interfaces available within a COTS package
can determine whether these aspects will require
(or even allow) specific development, whether it
will work with existing infrastructure (such as
smart cards, readers, digital certificates,
directories, existing definitions of users, groups
and roles, encryption algorithms, etc.) or
whether a separate infrastructure will need to be
set up and maintained.

One approach taken in this area is that of
providing a standardised interface to an external
"pluggable security module", which can provide
cryptographic services of various sorts. This is
the CDSA model, originated by Intel, and used
in various recent IBM products today. It is also
the model being used by Lotus to separate the
grade of security provided in a particular
environment from the actual standard function of
the underlying messaging product.

Management interfaces
And now for the side that everyone forgets to
look at. Until there are problems, that is!

Typically we are going to be rolling out COTS
software to large numbers of users, perhaps in
various distributed locations, and then we are
going to have to maintain an inventory of who
has what level, detect problems that might
occur, manage the application of maintenance,
perform backups, provide for recovery, maybe
provide remote debugging or remote assistance,
operate, monitor performance and availability,
etc..

How do we manage the cost of doing that?

The Management and Monitoring Interfaces
provided by software applications can in theory
support multiple objectives in the organisation,
including failure detection, deployment tracking
for initial roll-out or maintenance, detection of
misuse, assembling and tracking performance
data, remote operations, assistance or
debugging, etc. But there must also be some
coherence in the interfaces provided across the
various applications in order for this to be viable.

COTS software will generally lack these
capabilities to manage themselves. What is more
important is that they interface to some central
management and monitoring facility that does
have these capabilities. Here is an area where the
Programming APIs can come to the rescue.
They can allow alerts to be implemented
relatively easily, based on some reusable
standard functions. An example of this are the
Java classes (functions) provided to send alerts
to the Tivoli Enterprise Management facilities.

Conclusion
By considering these various facets of openness,
IT architects can improve the use of COTS
components in complex Information Technology
projects. It took some time for software

19-8

companies to embrace the open movement.
Today, with companies increasingly responsive
to customer needs, and new technologies
addressing a broader range of interfaces, we are
ready to move forward to a more
comprehensive definition of openness, and, as
shown by a few of the examples from IBM
related in this paper, we can expect that the
companies providing Commercial Off-The-Shelf
software will be prepared to respond.

20-1

Lotus White Paper on COTS for Military Crisis Applications

Patrick Fournery
Director of Technology

Uffe Sorensen
Director of Business & Strategies

Lotus Development S.A.
Immeuble Lotus, La Defense 6

35-41, rue du Capitaine Guynemer
92925 Paris La Defense Cedex

France

Summary: As businesses evolve to e-businesses,
it is interesting to observe how the civilian
requirements related to COTS software
increasingly resemble the military crisis-mode
requirements in terms of continuous operation
(100% availability), vast scalability (Internet
community), absolute reliability (transactional
integrity), total security (numerous "enemies" with
malicious intent in a IB user wired community),
flexible and manageable interoperability (alliances,
mergers and acquisitions must be almost
instantaneous and fully controlled). As COTS
software vendors satisfy these civilian
requirements, it will eventually facilitate military
use. Inadequate software will naturally be
supplanted in the marketplace by capable
technologies.

"The central event of the twentieth century is the
overthrow of matter. In technology, economics
and the politics of nations, wealth in the form of
physical resources is steadily declining in value
and significance. The powers of mind are
everywhere ascendant over the brute force of
things the most powerful corporation is the
one with the ability to rapidly turn ideas and
thinking into new products, new services and new
business !
In this environment, SW is not just product. It is a
competitive weapon !"
Microcosm by George Gilder

Introduction

This paper is intended as an introduction to the
thought-process in Lotus around Commercial Off-
The-Shelf software in the context of military use.

We think that the civilian requirements placed on
the software vendors actually more and more
resemble demands formerly only raised in military
contexts. Clearly, certain aspects of security and
managing sovereignty will need specific adoption
to military purposes. I deliberately write
"adoption" as the fundamental COTS software is
unchanged with appropriate additions and
modifications for military use. A good example of
this is the Lotus Domino Defense Messaging - the
fundamental messaging capabilities enhanced with
military grade capabilities.

In this paper we distinguish between the use of
COTS software in crisis and non-crisis mode for
administrative, planning, operational and conflict
applications:

Administrative Applications

The use of COTS software in applications operated
by mainly non-military staff dealing with non-
crisis issues has clear advantages over RYO as
recognized by almost all non-military
organizations:

• Lower TCO - purchase price, limited
education requirements around the End User
Interface as most evolve towards similar
paradigms, limited integration costs as
standard interfaces are observed, lower
maintenance cost.

• Faster implementation for quicker problem
resolution.

These non-crisis mode applications are most
adequately addressed by COTS software and will
not be further elaborated here.

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels. Belgium, 3-5 April 2000, and published in RTO MP-48.

20-2

Planning Applications

Material planning and similar applications have
two aspects - peace-time operation where resource
planning is no different in military as compared to
civilian organizations, and war-time operation
where resource planning becomes highly critical.
However, the same software must be used in both
situations to ensure proper experience by civilians
and military staff alike. Thus, requirements for
this software is as for conflict applications.

Operational Applications

Peace-time operational applications, like
surveillance, tracking, etc, exhibit exactly the same
requirements from a military perspective as
conflict applications - and indeed are also needed
during war-time. Thus, requirements for this
software is as for conflict applications.

Conflict Applications

RYO software has been the mainstay of these
applications, although standard operating systems
(UNIX derivatives, Windows NT) are increasingly
the platform. The requirements which must be
met by software in this category are further
discussed in the following paragraphs in terms of
Scalability, Availability, Reliability, Security and
Interoperability.

Scalability
As civilian applications are increasingly made
available to a World Wide community via the
Internet - or just inside a growing enterprise
conglomerate - COTS software for applications
such as electronic mail, discussion databases,
electronic publishing, document management,
workflow, etc, must provide dramatic scalability.

Both in terms of server technology infrastructure
supporting "few" to "millions" of users as well as
an ability to deploy similar numbers of clients.
Both when specific client side software is needed
and when standardized clients (Browsers, IMAP4,
etc. clients adhering to the appropriate Internet
standards) are used.

Not only must a large number of users be
sustained continually, however, ability to handle
peek-load situations become critical (anecdotal
examples are government releases of key white
papers or investigatory reports creating massive
peeks in traffic to a web-site).

COTS software with inadequate scalability will be
supplanted in the marketplace by capable
technology as the applications are being
recognized as mission critical to most
organizations.

From a military viewpoint, similar scalability
requirements exist - both in terms of sustained
load, but also in terms of concentrated periods of
extreme activity. The similarity in requirements
doesn't obviate the need for rigorous testing of
infrastructure capacity and robustness in the
military scenarios, however, the military
application will not raise scalability requirements
beyond for civilian use.

Availability
Outages of any particular software solution
originates from one of several situations:

• Unplanned outages resulting from failure in
the operational environment: These situations
go beyond the particular software package,
however, places requirements on the deployed
operating environments and on the ability of
the server software to support capabilities such
as clustering and fail-over to minimize impact.

• Planned operational down-time for
maintenance or other activities. Again,
duplication through a clustering solution can
provide increased / 100% availability.

• Unplanned outages resulting from software
defects: The total impact here is directly
related to the ability of the software author /
provider to establish a work-around or
providing a fix.

For the non-defect situations, the same Darwinistic
viewpoints as expounded elsewhere leads to
appropriate technologies surviving in the
marketplace and being omnipresent.

20-3

For defect situations, identification and
management of software defects should be
understood: It is highly likely that de-facto testing
of certain COTS software go beyond actual testing
carried out with military RYO software due to
sheer vastness of civilian deployment. Ultimately,
in a critical defect situation the military becomes
dependent on one of two:

1. Access to the COTS software vendor - and the
ability / willingness of the vendor to provide a
fix / workaround.

2. Access to the internal RYO software developer
- and the ability / willingness of the IT
department to provide a fix.

No clear prioritization can be done on either of
these undesirable situations. However, what
should also be discussed here, is the ability to even
update the defunct software in a distributed
network during a military conflict and other factors
influencing the total availability of a particular
solution.

Security
Involves two fundamental aspects: Confidentiality
and authentication. Both are achieved through
cryptography (symmetric and asymmetric) based
on confidential and/or private/public paired keys,
where the key length is the basic differentiator
between civilian and military use.

Historically, the US DoD embargoed exportation
of strong encryption technology outside the US,
however, this trend is changing and strong
encryption is being deployed for several key
Internet business applications (most notably
financial).

A key example to explore here is secure
messaging:

• From a civilian viewpoint, messaging has
evolved to require secure messages, which
have been defined by the Internet Engineering
Task Force (IETF) in the Secure MIME
standard, allowing transmission of secure
messages within the Internet, independently of
the originator and cryptographic devices used
on the transmitting and receiving side.

• From a military viewpoint, STANAG 4406
defines the NATO military community's
protocols and standards for achieving
interoperability amongst member nations.
Most notably, STANAG 4406 embraces
Secure MIME v3 for secure messages [v3
pending ratification by the IETF].

Lotus has been a leading provider of secure
messaging solutions - signing and encrypting
messages are natural features to Lotus Notes and
Domino electronic mail users. A natural part of
the evolution of Lotus secure mail was the
complete adoption of the S/MIME v2 standard in
the latest product releases.

As the provider of the most pervasive and secure
messaging platform, it was natural for Lotus to
also explore military messaging: Lotus introduced
a special Defense Messaging Solution in the US as
a natural extension to the commercial versions of
Lotus Notes and Domino software.

A technologically similar solution was developed
for the European market and made available as the
LDDM (Lotus Domino Defense Messaging)
solution with military grade security independent
of the US DoD.

An essential feature in LDDM - which is also
recognized as a key commercial requirement - is
the ability to support country specific demands for
sovereignty. Lotus provide the ability in the
military augmented versions of the software to
provide a owner defined and managed encryption
scheme.

Generally, COTS software is evolving towards
"plug-able" encryption modules - not only for
specific solutions as LDDM, but generically for
any application where sovereignty is essential,
which today embraces almost all e-business web
applications.

Reliability
With the rapid trend towards use of COTS
software in e-business deployments and having
mission critical transactions originate on the
Internet, customers are forcing COTS software
vendors to ensure transactional integrity: Civilian
and military requirements towards having mission
critical transactions executed once and only once
are identical - and appropriately handled in COTS
software today.

20-4

Interoperability
COTS software is by customer demand converging
on a set of open standards, most notably Internet
related standards. The effect is not only vendor
independence and ability to integrate diverse
applications with limited effort, but also the
enablement of individual operational units to
connect and interact on demand maintaining full
control within each unit over the external factors
that can influence the unit.

Customer demand is also forcing COTS software
servers to expose their services to a common,
robust programming model (most notably
CORBA), which limits the investment needed in
skills to utilize the services for specific tailored
applications.

Conclusions
Although the specific intents of software
applications for civilian versus military use are
very dissimilar, the overall requirements are
converging as a result of the increasing role of the
Internet in connecting all businesses and
consumers. We remain convinced that Lotus'
COTS software with appropriate military
amendments can play a significant role in military
crisis applications.

21-1

Wireless TCP/IP and Combination with Broadband Media

Thomas A. Kneidel
ROHDE & SCHWARZ GmbH & Co.KG

Abt. 2WFM
Mühldorfstrasse 15

81671 München, Germany

Objectives:
The presentation shows products for new applications (mobile IP) by using cots hardware and software
components. This cots-components are implemented and adapted to fulfil services in the commercial and
military field.
The following part describes the technique more in detail.

Up to now the demands of the military command were implemented in special - mostly analog -
communication networks. These, however, present the great disadvantage that they are not interoperable or
only to a limited extent due to the different proprietary protocols used. Among all these protocols the
TCP/IP protocol is evolving as the international standard for data exchange across network borders. The
TCP/IP protocol used worldwide on Internet or in X.400 networks guarantees interoperability on different
computer platforms irrespective of manufacturer and operating system.

Rohde & Schwarz developed a software solution, called PostMan that enables transparent
implementation of the TCP/IP protocol at the HF air interface and so ensures unhindered transmission
from wire to radio communication networks. For the first time in history, for example, E-mails to or from
any Internet address can be sent or received from a ship across thousands of kilometres. Even Internet
surfing via short-wave with commercially available browsers is possible for every mobile station. Every
TCP/IP-based application can be carried out via radio using PostMan which covers the entire HF/VHF/UHF
band.

XK2000

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

21-2

Fig. 1: Wireless TCP/IP via HF

In some regionally limited radio networks TCP/IP-based communications are already being implemented.
PostMan allows these networks to be interconnected even across large distances to obtain a full-coverage
network. Within the framework of a trial at the material inspection agency of the US Army
Communications Electronics Command (CECOM) this interoperability was tested using existing
VHF/UHF data radio networks. Separately operating radio networks of the SINCGARS (Single Channel
Ground and Airborne Radio System) and EPLRS (Enhanced Position Location Reporting System) type
were interconnected by means of PostMan and data were exchanged across different radio links without
any interaction.PostMan not only links the individual radio networks but also enables access to wire
communication networks as for example Secure Intranet (SIPRNET).

Tactical Internet
Access

INTRANET "A"

Fig. 2: CECOM Trail
INTRANET "B"

In addition to transparent TCP/IP access via radio, the software package PostMan contains an intelligent E-
mail system. This E-mail client is especially adapted to the requirements of a radio-based communication
network (based on message application programable interface - MAPI - of MS Exchange).
In this connection, the E-mail-client contains a new address format RSPeer that ensures the direct delivery
of the message to the computer of the addressee. The message is physically available on the hard disk of the
recipient, the usual detour to the central post office being avoided. This delivery procedure excludes any
misuse of and unauthorized access to the mail traffic of a network. Moreover this format ensures that one's
own information is secure. This type of addressing also minimizes the data exchange on the frequencies
available and so eases the traffic load of the radio network.

The messages exchanged are furthermore protected by integrated encryption with an algorithm that is
stored on a PCMCIA card.

PostMan allows structures and network configurations to be defined as required. Traditional hierarchical
official channels can be implemented. If requested, the horizontal distribution of E-mails, which is often
regarded as a disadvantage in military applications, can be suppressed.

In addition to HF/VHF/UHF radio, various other transmission media such as SatCom, ISDN or GSM may be
used. PostMan optimizes the utilization of the available media by alternative routing. Should the medium
intended for information transmission be interrupted, PostMan dynamically and automatically selects an

21-3

alternative medium (according to a priority list) and continues transmission. Prior to selecting another
medium PostMan checks whether the addressed station can be reached otherwise, eg via a relay station
(alternative paths). The automatic change to alternative transmission media is a special feature of PostMan
which no other E-mail system offers.

The E-mail client of PostMan possesses all the functions a modern E-mail system has to provide. This
includes logging of all actions in a log book and assignment of different priorities to messages and
addressees. Additional transmission acknowledgement and individual preselection of the time at which the
message is to be transmitted support the use of PostMan in radio networks.

The PostMan software package from Rohde & Schwarz gives radio networks access to the existing
worldwide wire communication networks and their applications. The E-mail client moreover optimizes the
utilization of electronic messages in military applications.

Combination with broadband media
The ever increasing volume of information in the data networks congests the available transmission
channels. Modern broadband transmission media point the way out of this bottleneck. Especially in
conjunction with conventional narrowband media, the new media ensure efficient utilization of the channels
and achieve so far unattained data rates.

For stationary applications, the data highway to the office or living room can take on a variety of forms.
Wireless local loops can be implemented via the air interface using microwave links or the access to data
can be accelerated by means of fiber optics, power lines or TV cables. Mobile applications face serious
limitations with the data transmission bottleneck and the low data rates being at the root of the problem.
Modern technologies (eg ADSL), intelligent management systems, complex coding methods and adapted
protocols (eg WAP) open up new approaches. Same as in the case of stationary applications, considerable
improvements are expected of the use of new broadband transmission media. At present, the role that third-
generation mobile radio with UMTS (universal mobile telecommunication system) is going to play in this
scenario is not yet clear. The following media look promising in easing the situation:
■ DAB - Digital Audio Broadcast
■ DVB-T - Digital Video Broadcast Terrestrial
■ GBS - Global Broadcast Service
■ GSS - Global Satellite Service

The new media are suitable for both broadcast applications and point-to-point connections.

Broadcast
In broadcast operation, individual subscribers or entire groups receive data from a center without having to
have access to the source of information. Internet contents such as newspapers or market reports are emitted
to subscribers via Internet push services. The subscribers store the received data in their PCs. Using standard
web browsers the data in the PC can be read at any time. This fast and unidirectional way of distributing
information is of great advantage in military applications since the recipient of the message does not have to
send an acknowledgement which could enable the enemy to intercept and locate.

21-4

Fig. 3: Broadcast operation via DAB transmitter

Point-to-point connections
With point-to-point connections, the desired information can be called from an interactive data network,
provided that the user is connected to the information source. Broadband media however have the
disadvantage that they normally require considerable technical outlay (weight, space, power supply, ...) at
the transmitter end. Moreover they are often only partly suited for mobile applications. A solution that can
easily be implemented on an aircraft carrier, for example, may well be literally unbearable for an
infantryman. The fact that most interactive multimedia applications are however based on asymmetrical
communication involving short queries and extensive replies favours hybrid solutions. The access to the
Internet, for example, can be implemented via narrowband media such as shortwave, tactical radio, TETRA
or GSM, while the data themselves, which are usually quite voluminous, are returned via broadband media.
This ensures an extremely efficient utilization of the available resources and at the same time makes a virtue
of necessity.

The choice of the transmission media is essentially determined by the distances to be covered. Additional
decision criteria are data volume, transmission speed and security.

LOS range
DAB is regarded as the most promising broadband media for the LOS (line of sight) range. DAB was
originally designed for the transmission of sound to mobile and portable receivers, but it is also an ideal
platform for the secure transmission of digital data of any kind. DAB networks operate as single frequency
networks (SFN) and so ensure frequency economy. Information is distributed from various transmitters in
program multiplex to different receivers at the same frequency. OFDM (orthogonal frequency division
multiplexing) coding as the modulation method provides excellent transmission quality, which ensures
reception even at high speed (up to 900 km/h).
The data are transmitted in band III and L band (174 MHz to 227 MHz/ « 1.5 GHz) at rates of up to 1.5
Mbps (megabit per second). The information in IP (Internet protocol) format is inserted into the ETI

21-5

(ensemble transport interface) data stream in line with ETSI-ES-201-735 (European Telecommunications
Standards Institute).

The DAB counterpart for the transmission of TV signals is DVB-T that has similar characteristics and
capabilities as DVB but enables mobile reception at low speed only.

To distribute information, for example in the deployment of rapid crisis reaction forces, mobile DAB
transmitters can be set up without any problems even in remote areas.

As regards point-to-point connections in military applications, the narrowband back channel is preferably by
means of VHF/UHF radio links. Basically, GSM (global system for mobile communications) could also be
used for this purpose. GSM however requires an intact infrastructure that cannot be guaranteed in military
scenarios. Combat net radios on the contrary set up reliable links even under conditions of jamming and
impede interception.

DAB

Fig. 4: The Rohde & Schwarz product range includes all components necessary for point-to-point operation:
tactical M3TR radios, DAB and DVB transmitters and IT product PostMan.

The mix of DAB and tactical radio opens up a wide variety of applications. If a battalion command post has
to be relocated for example, database updates can be transmitted to the new site within seconds. Awkward
troop movements required at present for database update would so become a thing of the past.

Supraregional sector
Another already frequently used method is the integration of digital TV into the world of communications.
With this approach, the desired information is requested from the Internet via the usual transmission paths.
The reply data stream, however, is routed from the source (server) to the operation center of the satellite
network and transmitted to the user via a fast, broadband satellite downlink.
This technique of course permits the pinpointed transmission of information in broadcast mode to individual
users or groups.

21-6

It is basically intended for the wide-base and consumer market, but can also be employed in mobile
radiocommunications. Data are called via HF for example and returned via satellite.

Firewall

C Intranet

Fig. 5: Combined shortwave satellite transmission with SpaceMan from Rohde & Schwarz

Routing the Internet data stream in this way becomes possible by modifying the Internet protocol (IP), which
is responsible for route selection in the Internet. Using what is called IP encapsulation, the IP packages are
put into an "envelope" addressed to the operation center. The operation center reads and routes on the
envelope contents and, acting as a new user with respect to the addressed Web server, sends the information
to the requesting party via satellite. Satellite transmission is unidirectional in this case, ie information can be
received but not sent via this path. With Internet requests usually being very short (eg http://www.rsd.de)
and the reply data volume comparatively large, the advantages of this technique make themselves felt all the
more.

SpaceMan combines the above commercial principle with radiocommunication. Requests to the Internet are
made via radio (HF/VHF/UHF) and the help of PostMan, and transmission of requested data via fast
satellite links. Access to this modern information technology (IT) with radio linkup is realized by means of
PostMan, which allows transparent TCP/IP radio data transmission. PostMan in conjunction with shortwave
transceivers of the XK2000 family provides unrestricted access to wired communication networks via radio
links from any point on the earth. Reception of satellite signals is implemented in SpaceMan by commercial
system solutions adapted to radio technology. This provides wireless Internet access unimpeded by the
constraints of low data rates.

System components and technology
Apart from the radio equipment, the user requires a dish for the reception of satellite signals and a decoder,
which is in the form of an extension card installed in the PC. PostMan together with control software sends
user's requests via radio and handles download of data from the Internet to the PC via satellite. In most
cases, a commercial elliptical 60 cm dish or similar will do for the reception of satellite signals.

21-7

Satellite transmission is via free channels - the socalled transponders - of TV satellites such as ASTRA or
EUTELSAT. Data transmission is based on DVB/MPEG2 (digital video broadcasting/MPEG2 is a method
for moving picture compression). At the protocol level, a special ADBS (advanced data broadcasting
system) extension is used, among other things, to provide filter functions in addition to addressing and
routing. ADBS offers various protected access modes (conditional access, security, privacy). This allows
individual hardware addressing of any station.

Data rates
The broadband satellite links allow transmission of Internet data at rates up to 400 kbit/s. This is several
times the data rate of conventional V.34 modems with max. 56 kbit/s or ISDN with 64 kbit/s. The data rate
of 5.4 kbit/s afforded by shortwave appears modest in comparison, but is of little consequence considering
that Internet requests are rather short.

Problem-free operation is guaranteed as long as the user is within the footprint of the satellite. This
combination of radio and satellite transmission can also be used on ships with the benefit of undreamed-of
data rates at low charges.

Safety
The transmitted information is encrypted to protect it against unauthorized interception. In addition, end-to-
end encryption provides a high degree of safety.

Conclusion
The approaches described above open up completely new perspectives to mobile users who in the past had
no access to wired communications because of poor infrastructure.

22-1

COTS based systems: the necessity of a service & systems management
strategy to assure service levels

(March 2000)

Dirk Somerling
Tivoli Account Manager

IBM Belgium
Square Victoria Regina 1

B-1210 Brussels, Belgium

COTS based systems create the need for system
management strategy: In large military organisations,
as in any traditional business organisation, the collection
of the tasks to be performed by every employee results in
the service the organisation provides. In order to
perform his tasks at best, each employee needs a set of
tools, which differs according to the task to be performed
(e.g. phone, vehicle, etc.). In our particular subject, the
employees rely on (a) computer(s) and on the
applications and data accessed through or processed by
his (several) computer(s).

The kind of applications and data used by each employee
will vary according to the role of the employee and the
tasks he has to perform, from simple office tools to more
advanced workflow or C3 applications, the trend being
that the set of applications consists more and more out of
COTS. In any case, the employees make use of a mix of
critical and non-critical business applications.
In an ideal situation - certainly from an efficiency point
of view -, employees should not care about computers,
operating systems, underlying protocols or networks.
What really matters to them and to the efficiency of the
organisation, is the availability of the applications and
data in order for them to perform their tasks efficiently at
the appropriate time. Inability to perform, whatever the
reason, can result in a chain effect - as tasks are
interrelated -, creating a negative impact on the
performed service of the organisation: its operational
capacity can then be impacted to various degrees.

Because of this, it has become very important for IT
infrastructures, to create a situation where they can
manage the support and the availability of the entire IT
capability (from the network infrastructure up to the user
interface running on each client desktop), where they can
be accountable on the base of service level agreements
between the IT department and the users. While in the
past (specialised infrastructures), the system
management aspects where taken care of by the
application from its very first design, the systems based
on COTS relies on the assembly of elements not
conceived for high availability purposes, hence the need

to develop a specific strategy to improve the efficiency
and availability of the entire COTS based IT system.
Else, the COTS system will be as weak as its weakest
link, and the CTRL+ALT+DEL syndrome will apply at
critical server levels.

Service & system management through service level
agreements: Starting from this perception, Tivoli has
over the last years developed a complete set of tools
aiming at managing the total IT infrastructure -
enterprise system management -, widely accepted by the
market. This management platform is the best answer to
manage the whole enterprise, reduce the complexity and
gain back the control of today's IT environments.

The cornerstone of the efficiency of this platform relies
on the fact that it is implemented starting from the
business rules of an organisation (e.g. operational
requirements) and not from an IT perspective (e.g.
driven by the operating system that is being used).
Tivoli does focus on managing the IT processes instead
of the IT technology. Once the business rules have been
defined for a given organisation, they can be applied to
the existing IT infrastructure including the COTS (or
non-COTS) based applications.

This approach is the only way to increase the efficiency
of the organisation and thus provide or increase the
appropriate level of availability, reliability and security
of the applications and data for each user according to
his business needs, hence to the entire organisation.
Only then, organisations can provide and achieve high
and measurable service levels, be really responsive to
business demands and meet the operational goals, even
when COTS are being combined as the basic platform
for the employees.

You have to gain back the control of the IT environment
by implementing systems management best practices.
The Problem Management best practice for instance
(with the help of pro-active monitoring solutions) will
result in shorter problem resolution times and focused
interventions with well identified skilled resources. The

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

22-2

complete granularity of the Tivoli family of solutions
allows to tackle the entire range of systems management
disciplines such as problem, change, asset, security,
storage, and operations management, and this in a
coherent and single interface across the entire COTS
stack altogether with the rest of the IT resources (data,
applications, hardware, network, users etc.) of the
organisation, helping to achieve the appropriate level of
service and operationability.

All organisations are confronted with widely distributed
heterogeneous systems, interconnected COTS
applications and a high rate of change. We should
reduce the complexity inherent of today's COTS
environments by managing the systems in a consistent
way and by simplifying the operations. The
management infrastructure does not have to be modified
when the migration of COTS (version upgrade or move
to another product) occurs because Tivoli is platform
independent. The defined business rules will simply be
applied and translated to management rules implemented
in the newly installed COTS. Organisations are finally
able to reach the COTS rollout deadlines and are even
less dependent on specific skills to fulfil these
operations. This altogether leads to a reduced cost for
supporting these regular changes (new implementations
or upgrades).

The increased control of the IT resources and the
possibility to manage complex environments and
applications, is an absolute necessity at the beginning of
the e-business era. Obviously, the multiple enterprise
systems connected to the Internet need to be managed,
with an even higher availability and security, and the
operations and processes to support the huge potential
growth need to be well managed.

This confirms once more that there is an absolute
necessity to implement a dedicated strategy &
environment to manage COTS.

23-1

Modernizing OMIS,
an operational air force C2 system,

using
COTS hardware and software products

J.G. Stil
ICT Division

National Aerospace Laboratory NLR
P.O. Box 90502

1006 BM Amsterdam
The Netherlands

E-mail: stil@nlr.nl

Abstract

This paper outlines some experiences, gained with
the modernization of an existing and operational
air force Command and Control (C2) system using
Commercial-Off-The-Shelf (COTS) hardware and
software products and the adoption of standards, from
a practitioners perspective. It describes examples of
functional areas where requirements could be met
using COTS products alone and where requirements
couldn't be met and what strategies were followed to
meet these requirements.

1 Introduction

This paper presents an example of the application of
COTS hard- and software products for the moderniza-
tion of an operational air force C2 system. The sys-
tem consisted of a tailor made application running on
COTS hardware. The application has been modernized
using as much as possible COTS software products and
the hardware has been replaced by leading edge tech-
nology hardware. The aim of this modernization was
to come to a system based on state of the art technol-
ogy. The new system had to be easier to use, have ca-
pabilities for interoperability, lower maintenance costs
and it had to form a solid base for future functional ex-
tensions.

The paper describes how COTS products are ap-
plied to fulfill the military requirements, with emphasis
on the application software. This paper also explains
what measures have been taken to satisfy requirements

where COTS products alone are not sufficient.

2 COTS products in a military
environment

In the last decade more and more COTS information
technology (IT) products become employed in military
environments. Personal Computers, operating sys-
tems, office suites, database management systems, etc.,
originally meant for the consumer market, appeared
to be usable to fulfill the military requirements. Im-
plementation of these leading edge technology prod-
ucts in defense applications has become an attractive
alternative for custom made systems and is generally
seen as an effective way to cope with reduced budgets
and staff. Advances in technology are no longer driven
by military applications, but rather the military market
only needs to exploit technology that exists in the com-
mercial market [6].

Besides the lower costs, application of commercial
available products can result in shortened acquisition
times and a shorter time-to-deployment and therefore
could provide military advantage, as stated in [2] and
[7]. The earlier a leading edge technology becomes de-
ployable in the battlefield, the better. The products are
available relatively fast and the prices for these prod-
ucts continuously decrease. Furthermore, if products
are available from multiple suppliers, dependency on
a single supplier reduces.

Note however that in some situations application of
COTS products alone is not sufficient, especially when

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

23-2

requirements are very military specific. COTS alone
often results in a so-called 80 percent solution, which is
generally what the COTS solution represents in terms
of a comparison toward the customed desired or cus-
tomed tailored requirements [3].

In many situations the missing requirements can be
met by implementing glue code or by making modifi-
cations to the COTS product. In other situations it not
possible to determine whether requirement can be met
with a certain COTS product. In these situations it is
often no longer possible to treat the COTS product as
a black box. More (inside) details about the product
might be necessary [5] and possibly involvement of the
manufacturer.

M. Looney and J. Briggs even state: "By definition,
any development project cannot be completely COTS.
There must always be some glue to integrate compo-
nents or customize them which implies some level of
understanding and involvement" [4].

Following paragraphs describe how COTS are ap-
plied in an operational military environment and what
measures have been taken to cope with the shortcom-
ings of the applied COTS products.

3 Overview OMIS

The example presented here describes the modern-
ization of OMIS. OMIS is the Operations Manage-
ment Information System which is in use by the Royal
Netherlands Air Force (RNLAF) at Volkel Air Force
Base in The Netherlands since 1983. OMIS is a com-
mand and control (C2) system which has as main goal
to support the RNLAF in its task to prepare aircraft for
missions to be flown. OMIS assists in the communi-
cation of all necessary information between different
control centers and units and provides all users with
consistent and up to date information, needed to per-
form their task. A schematic overview of the OMIS
functionality is shown in figure 1.

The system met all requirements with respect to
functionality, way of operation and security. The func-
tionality was assured through continuous maintenance
and adaptation of the application software to fit the
changing needs of Volkel Air Force Base with respect
to their business rules. The operational availability was
assured by adding redundancy through application of
multiple computers which mutually synchronized all
information. Security was assured through the imple-
mentation of a sophisticated access control mechanism
based on the need to know principle. The system was
approved by military intelligence and was intensively

Aircraft Reporting

Armament

Figure 1: OMIS functionality

used for the daily operations and during exercises.

OMIS consists of tailor made application soft-
ware running on COTS hardware which consisted of
DEC PDP-11/84 minicomputers, interconnected with
each other via DECNET (including crypto devices),
and DEC VT-420 terminals (see figure 2). The OMIS
application software was developed by the National
Aerospace Laboratory (NLR) in the Netherlands, un-
der responsibility of and in close cooperation with the
RNLAF.

^

Cc a, DEC
VT420

terminals

(3)

PK
DEC

PDPll/84
computer

DEC
PDPll/84
computer

p\

/

Pk
DEC

PDPll/84
computer

DEC
PDPll/84
computer p\

<S £ k ß k \>

Figure 2: The OMIS network architecture

Not only the application software was tailor made.
Functionalities that are less application specific, like
database management and data replication, were also
tailor made.

23-3

4 System life-cycle and modern-
ization

4.1 Life-cycle aspects

In the mid 90's it became clear that it was no longer cost
effective to maintain the current OMIS. The main prob-
lem was that the hardware had become obsolete. Spare
parts became scarce and expensive maintenance con-
tracts where necessary keep the systems up and run-
ning. Besides that, the OMIS software was of a for-
mer generation of software that lacked standardization
and the capabilities for extension and interoperability.
However, because the system was constantly adapted
to fit the changing needs, the functionality was still
valid and absolutely required to support the execution
of the daily operations. Officers from Volkel AFB of-
ten say: "We can't fly without OMIS".

The RNLAF also had the intention to introduce
OMIS at other bases in the Netherlands. Therefore
the RNLAF decided to modernize OMIS. The result-
ing system had to be functional equivalent to the origi-
nal system and had to meet the same requirements with
respect to functionality, way of operation and security.

Further in this document the original OMIS will
be called OMIS-1 whereas the modernized version of
OMIS will be referred to as OMIS-2.

At the same time the RNLAF decided to realize a
complete new IT infrastructure at all their bases. This
new infrastructure, called KLuIM, had to be realized
using COTS hard- and software products. KLuIM
forms an implementation middle layer and should be
used as the basis for all future applications. This
new information infrastructure is intended to provide
a multilevel secure environment in which command
and control applications and office-like applications
are used simultaneously.

Another justification to modernize OMIS was the
changing operational role of the RNLAF. Till the late
80's the main task of the RNLAF was the defense of
NATO territory during the cold war. This role has
now changed to a role in which the RNLAF partici-
pates in multinational peace keeping operations, pos-
sibly where operational units are temporarily deployed
out-of-area. This new operational task requires com-
munication with other participating forces and there-
fore interoperability with other forces's information
systems.

A technical, but certainly important, argument for
modernization was the fact that the OMIS application
and the operating system were judged not Y2K com-
pliant.

4.2 Choices made

Two options for the modernization of OMIS were dis-
tinguished. The first option was to upgrade the hard-
ware only and run the application software on an up
to date platform, using emulators of the original hard-
ware. This option guaranteed the operational continu-
ity (only the Y2K problem had to be solved), but the re-
sulting system still would lack standardization (at least
at software level) and capabilities for interoperability
and extendibility. Another draw back of this option
was that emulators were only supplied by the manufac-
turer of the original hardware. This would result in a
lack of freedom of supplier. This option was consid-
ered not very attractive.

The second option was to upgrade to the new COTS
products based information infrastructure, existing of a
new hardware platform, a new operating system and a
new network, and to re-design and implement a func-
tional equivalent of the application software using as
much as possible COTS software products and stan-
dards. The application would be brought to state-of-
the-art technology. The functionality of OMIS itself is
defense unique, even air base unique. The type of ap-
plication however is not defense unique and could be
applied to non-defense environments, so it seemed to
be possible to apply COTS products.

An argument for the second option is on standards
for interoperability. Because the software had to be re-
designed, the RNLAF also had the possibility to con-
form to a standardized data model to enable interoper-
ability. The ATCCIS standard was adopted for OMIS-
2 and adapted to the air force situation.

The RNLAF had plans to introduce OMIS-2 at other
air bases also and therefore has chosen for the second
option because this option offered a better maintain-
ability and more opportunities for future extensions,
which were indeed defined.

5 Hardware

5.1 General configuration

The choice of the hardware was, amongst others, in-
fluenced by the requirement that it had to be possible
to run a wide variety of commercially available office
applications and to use OMIS-2 for out-of-area opera-
tions. It had to be possible to use a small OMIS-2 con-
figuration at locations where an operational unit of the
RNLAF is deployed temporarily, possibly connected
with the OMIS-2 configuration at the home base.

23-4

A choice was made for an Intel based computer plat-
form running under the Microsoft Windows NT4 op-
erating system. This choice allowed the application
of a wide variety of Personal Computers, from lap-
top to large server, depending on the needed capacity
and size of the configuration and a lot of office-like
software products are available for an Intel/Windows
based computer platform.

□ □ □
i . i i . i

IBM/PC
Clients

□ □ □
I , I c

Compaq ProLiant
Servers

Figure 3: The OMIS-2 network architecture

The client computers are equipped with removable
hard disks. This offers the advantage that defective
systems can easily be replaced while the workstation
related data stays available for the user, under the as-
sumption that no disk failure occurred. Another advan-
tage is that the disks of classified workstations can be
locked in a safe outside operating hours.

Choosing de-facto PC standard hardware allows
easy system upgrades to meet increasing performance
requirements. At the start of the modernization, lead-
ing edge hardware could hardly meet the performance
requirements. When the system was operationalized,
which was about two years later, the advances in hard-
ware technology happened so fast that the performance
problems were no issue anymore.

5.2 Security

The new information infrastructure had to provide a
multilevel secure environment at the operational air
bases in the Netherlands. The need for a multilevel se-
cure environment resulted from the requirement to be
able to run office-like and command and control ap-
plications in the same environment. However, COTS
network encryption hardware was not available due to
the absence of military accreditation for these prod-
ucts. Accreditation was absolutely required because
OMIS-2 needed to run on NATO SECRET level.

The KLuIM infrastructure was not available on time
for the modernized OMIS and therefore the RNLAF
decided to build a separate network. This network was
realized conforming the standards that were defined

for KLuIM and is used for command and control ap-
plications only. Later, when the encryption hardware
becomes accreditated, this network will be used for
office-like applications also.

The network that is implemented is an ATM-
switched fiber optic network. For security reasons, not
only the backbone is realized using fiber optic equip-
ment but also the end user workstations are connected
to the network via fiber optic cables also (no copper
cables). This separate network is accreditated to run
NATO SECRET.

5.3 Survivability

To assure failsafe operation at hardware level and con-
tinuity in emergency situations, the OMIS-2 configu-
ration at Volkel AFB consists of multiple server com-
puters, each located it a secure location. Whenever a
server fails or gets lost, the other server(s) take over its
tasks, mainly related to operating system and network
management, so that the system stays available for the
operational users.

Reliability of the servers itself was increased by
applying hot pluggable RAID-5 (Redundant Array of
Inexpensive Disks) disk units. This technology al-
lows replacement of defective disks without interrupt-
ing system operation.

6 Application Software

During the modernization of the software, four impor-
tant functional areas were encountered where COTS
software products alone were not sufficient to fulfill
the OMIS-2 requirements. These areas were security
(especially access control), logging, survivability and
interoperability. Following paragraphs describe what
measures have been taken to satisfy the requirements.

6.1 General approach

General approach was to apply as much as possi-
ble COTS software products to meet all requirements.
Some requirements that couldn't be met by the applica-
tion of COTS products alone were satisfied by imple-
menting missing capabilities on top of the COTS prod-
ucts using COTS available development tools. Other
requirements could be satisfied by tailoring parts of the
COTS software products.

The new OMIS had to be a client-server applica-
tion in which all user interface related functionalities

23-5

were performed by clients and data management ac-
tivities mainly by the server(s). The data stored in the
servers had to be structured in a model compliant with
the ATCCIS standard model.

Data management requirements could be satisfied
by commercial available Relational Database Man-
agement System (RDBMS) products from Oracle.
Database design tools from Oracle provide design
capabilities compliant with ATCCIS modeling tech-
niques.

In the future it might be possible that the applied
COTS software products have to be upgraded to newer
versions. To minimize the risk that the newer versions
are no longer compatible with tailor made parts of the
system, only capabilities of the COTS software prod-
ucts are used that are not de-supported by the manufac-
turer. Hardware and operating system specific features
were avoided completely.

The original OMIS software contained some capa-
bilities, especially related to security, logging and sur-
vivability which could not be provided by COTS soft-
ware products alone. These issues will be detailed
next.

6.2 Security

OMIS-2 required an access control mechanism follow-
ing the need to know principle. This mechanism had
to control the access to particular parts of the applica-
tion and to the data accessed by those parts. Classifica-
tion levels of the user and the location of the worksta-
tion had to be taken into account also when determin-
ing whether access was allowed or not. For example,
parts of the application might only be accessible from a
workstation located in a secure place such as a bunker.

The access control data had to be available on all
participating database servers and be consistent. In a
typical OMIS-2 configuration, multiple server comput-
ers are applied to assure continuity in case a server be-
comes unavailable. This means that users must have
access to more than one server using the same user
name/password combination.

Modifications to the access control data had to be
made via a two-men concept to prevent security viola-
tions by administrators.

The access control mechanism provided by Oracle7
is only based on rights to access data stored in the
database. Access to specific parts of a client applica-
tion couldn't be controlled by this mechanism directly.
This problem was solved by implementing a custom
access control mechanism on top of the standard Ora-
cle? mechanism. This mechanism is used by the client

application to determine access to the different parts of
the application.

Standard Oracle7 also did not provide facilities to
maintain a centralized user administration for dis-
tributed and replicated database servers. This problem
was solved by implementing a mechanism which peri-
odically synchronizes the distributed user administra-
tions of the multiple server computers.

The problem related to the maintenance of the autho-
rization related data was solved by implementing a spe-
cial authorization data maintenance application using
the COTS software development tools. This applica-
tion forces administrators to apply changes on the au-
thorization related data via the two-men concept. This
means that modifications have to be made twice, by
two different operators and within a certain time frame.
After the first administrator has made modifications
to the authorization data, this little application tem-
porarily stores the modified authorization data in the
database, so it can be used for comparison when the
second administrator makes the same modifications.
Only when the modifications, made by both admin-
istrators within the preset time frame, are exactly the
same, the modification is accepted.

6.3 Logging

The original OMIS used a very extensive logging
mechanism. For all modifications made to data in the
database, the old and new values, the user making the
modification and the time the modification was made,
were registered. Besides a log of data mutations, an
event log was maintained to register user actions. Both
logs offered the capability to reconstruct the series of
activities and mutations in case of system malfunction-
ing or security violations.

OMIS-2 required a similar logging mechanism to
register all data manipulations and user activity. The
mechanism provided by the Oracle7 database server
{tracing) was not suitable for OMIS-2 because at some
levels it did provide too detailed information whilst at
other levels it did not.

This problem was solved by implementing a sim-
ple logging mechanism in the databases. This logging
mechanism is based on a generator which generates
logging facilities for specific data sets. By applying
this technique the logging subsystem can easily be up-
dated whenever changes to the structure of a data set
have to be made.

23-6

6.4 Survivability

In OMIS, survivability was assured by applying multi-
ple computers, each with a complete set of data stored
on it. A tailor made replication mechanism kept the
data on the different computers synchronized. For
OMIS-2 this functionality had to be realized using Or-
acle capabilities.

Standard Oracle7 provides mechanisms to setup dis-
tributed databases and for database replication. The
database replication mechanism takes care of the dis-
tribution of modifications made on one server to the
other servers participating in a replicated environment.
The replication mechanism provides facilities to detect
conflicting simultaneous data manipulations on sepa-
rate servers and methods to solve these conflicts.

The standard mechanisms couldn't be applied di-
rectly because the conflict detection techniques did
not allow simultaneous updates on different attributes
of the same object which was absolutely required by
OMIS. For example, it had to be possible for a logis-
tic officer and an operations officer to assign an aircraft
and a pilot respectively to the same mission simultane-
ously when connected to different server computers.

The Oracle7 replication mechanism was slightly
modified so that above mentioned operations could be
performed. Also the conflict detection and resolution
mechanism needed some simple modifications. The
modifications made to the standard software are tem-
porary since newer versions of Oracle (>Oracle8) pro-
vide required capabilities standard.

6.5 Interoperability

A new requirement for OMIS-2 was the capability to
interoperate with other C2 systems. For OMIS-1 there
was no such requirement and therefore this system
lacked capabilities to interoperate.

At network level the interoperability requirement
was met via the application of standard network hard-
ware and software. At application level this require-
ment resulted in a complete re-design of the data
model. The ATCCIS standard data model was used
as basis for the new data model. All entities in
the OMIS-2 functional environment were re-analyzed,
normalized and placed in a so-called ATCCIS-able data
model. Adoption of the ATCCIS concept facilitates fu-
ture coupling with other national and possibly interna-
tional (COTS based) Command and Control systems
that are based on the ATCCIS model.

Application of a COTS relational database manage-
ment system offered the possibility to utilize leading

edge database technology for OMIS-2. The Oracle Re-
lational Database Management System provided the
enough functionality to implement the new data model.
Database design tools from Oracle were used for the
design of the database. These tools allowed automatic
generation of the database.

7 Concluding Remarks

The modernization of OMIS showed the successful ap-
plication of COTS products for a functional re-hosting.
The re-hosting resulted in a system with a 100 percent
equal functionality, but based on leading edge technol-
ogy and with improved capabilities for future exten-
sions and an improved ease of operation and manage-
ment.

The application of standard PC hardware for the
modernized OMIS showed that an assurance level at
least equal to the assurance level of the original OMIS
is possible.

The presented example showed that not all func-
tionality could be realized directly by the COTS prod-
ucts itself. It appeared not to be possible to meet re-
quirements related to security, logging and survivabil-
ity using COTS products alone. These requirements
were satisfied by implementing small modifications to
the COTS products or by successfully using applying
COTS software development tools to implement miss-
ing functionalities.

The requirement for interoperability was satisfied by
using the ATCCIS standard for the data model. The re-
sulting data model was implemented using COTS data
management products without any problem.

Mid 1999, OMIS-2 is installed and operationalized
at Volkel Air Force Base in the Netherlands. The con-
figuration consists of multiple servers placed at secure
locations, and client workstations all over the base.
Minor problems were encountered during the installa-
tion, mostly related to the scaling of the system. After
the installation it took only three days to operational-
ize OMIS-2. From mid October 1999 the modernized
OMIS runs smoothly. Intensive usage during large ex-
ercises did not result in problems.

References

[1] First Workshop on Ensuring Successful COTS De-
velopment, May 22 1999.

[2] Emmett Paige Jr. (assistant defense secretary for
command, control, communications and intelli-

23-7

gence). Striving for Information Superiority. De-
fense Issue, 11(72), June 22 1996. Prepared re-
marks to the 311th Theatre Signal Command Ac-
tivation Dinner.

[3] Lloyd Mosemann (deputy assistant secretary of
the air force). COTS in the Air Force - Success
Story. 1995. Prepared statement to COTS'95 Con-
ference.

[4] Micheal Looney and Jim Briggs. Some experi-
ences and comments on the use of COTS Software
in UK Naval Combat Systems. In First Workshop
on Ensuring Successful COTS Development [1].

[5] Norman F. Schneidewind and Allen P. Nikora. Is-
sues and Methods for Assessing COTS Reliability,
Maintainability and Availability. In First Work-
shop on Ensuring Successful COTS Development

[1].

[6] Richard Scott. Putting COTS in command. Jane's
Navy International, 102(4), May 01 1997.

[7] Paul G. Kaminski (undersecretary of defense for
acquisition and technology). Investing in Tomor-
row's Technology Today. Defense Issue, 10(46),
March 28 1995. Prepared statement to the Re-
search and Development Subcommittee, House
National Committee.

24-1

Experiences in designing radio monitoring systems using Commercial Off-
The-Shelf (COTS) components

Dipl.-Ing. Günter Palten
Rohde & Schwarz GmbH & Co KG

Radiomonitoring and Radiolocation Division
P.O. Box 80 14 69
Mühldorfstraße 15
D-81614 München

Abstract

As military tasks become more and more
complex budget will increasingly be limited due
to the national economic demands.
Simultaneously customer specific requirements
on near real-time processing, high availability,
tailored systems and integrability into NATO
Interoperability Management Policy are
growing. The new challenge for developers and
designers on the one hand consists in meeting
these customer requirements and in offering
modular and flexible components which can be
integrated into legacy systems. On the other
hand development costs have to be reduced and
the time for assembling and delivering systems
have to be shortened. Therefore systems for
military purposes have to integrate and have to
be developed with more and more extendable
and pre-built standard Commercial Off-The-
Shelf (COTS) components.
As a main partner of the German armed forces
the Rohde & Schwarz Radiomonitoring and
Radiolocation Division offers customer tailored
and component-based systems as well as system
integration services using software and hardware
COTS components. A lot of experience has been
made during that process of system
development, tailoring and integration using
COTS products.

The Rohde & Schwarz radiomonitoring systems
may be seen as one of these numerous examples
for integrating COTS together with customer
specific components. These systems also show
the effects the use of COTS products may have
on procurement and development process and
system architecture. Radiomonitoring systems
by Rohde & Schwarz represent a concept which
meet the requirements of a state-of-the-art
monitoring, location and analysis system. They
are built up in a highly modular way and
developed, built with and grouped around

typical COTS products like commercial data
bases, interfaces and hardware and software
modules. The software architecture and the
system concept provide client-server
functionality and links to complementary
products such as frequency management
software, geographical information systems
(GIS) and analysis systems. Custom-tailored
solutions are manufactured by connecting
standard hardware components and off-the-
shelf, tested software modules.
Due to the modular concept radiomonitoring
systems can easily be upgraded from a compact
to a more complex and interoperable system.
Standard interfaces allow high communication
connectivity within local or world-wide
networks and support therefore required
interoperability with coalition and legacy
systems.
The present paper describes experiences using
COTS components and forming functional
systems from software and hardware integrants
by adapting them to customer specific
requirements.

1. Introduction

Due to the progress in defense technology
modern systems for military purpose are
becoming more and more complex and
increasingly expensive. Numerous components
have to be integrated and have to align with
requirements like integrability into legacy
systems, interoperability and system capability.
In times budget is usually limited, customers
and industry have two different aims. Users and
customers expect cost-effective systems which
cover every requirement and which can be
integrated into an existing system environment
without any additional costs. System designers
and developers have to be as individual as
possible to give the customer the impression of
uniqueness. Simultaneously they have not to

Paper presented at the RTO 1ST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

24-2

invent really new systems with every
commission they are working on. System
designers and developers have to keep a large
number of industrial and specific standards,
protocols and techniques, use state-of-the art
methods, tools and devices each one of which
needs to become familiar with.
They therefore integrate more and more off-the-
shelf products, hardware components and
devices and use often COTS hardware and
software components to keep close to the
customers needs or to reduce the effort in the
own software development process.
But with the use of third party products -
commonly defined as COTS components - and
the integration into a system miscellaneous
problems raise than building a system with
completely own products which have been
developed and constructed presently or
previously internally by the development
organization itself.
Being aware of these problems we have decided
to use COTS products for building customer
specific and tailored systems for radio
surveillance and monitoring purposes as well for
military as civil clients. Rohde & Schwarz is
looking at these problems from the integrators
point of view, who is using COTS products to
build systems rather than from the COTS
builders point of view himself. The following
paper is a report about the experiences we have
made, concerning integration of COTS products
in systems for military and intelligence purpose.

Using radiomonitoring systems as an example
the paper describes the approach and the
possible points to bring in these products.
Starting with a basic overview on
radiomonitoring systems, their components,
functionality and operational structures points of
attachements will be shown for the use of
COTS. Experiences out of the development and
integration process will be outlined. For the
process itself had not yet been finished a final
statement about the success can not been made.

2. Definiton

From the system developers' and integrators'
point of view Commercial Off-The-Shelf
(COTS) products are commonly defined [1,2,..]
as components provided by a third-party vendor.
On the one hand they may be used for the
development of a system, on the other hand as a
hardware or software component of the system
itself. By definition they are products which

have to be accepted as they are, because system
builders have little or no influence on
maintenance and evaluation. Commonly they
behave and must be treated like a black box.
Another characteristic and important feature
among a lot of others is the grade of evaluation
and the wide spectrum of customers and tasks
they are designed for.
But exactly these characteristics cause the
different set of problems but also cause
challenges typical system integrators have to
deal with.

3. Background

A first step in designing and building a system
for radio surveillance and monitoring by
integrating COTS products is to understand
these systems and its functional concurrence in
its entirety. The system technique itself and the
reproduction of procedural steps into a modern
workflow is nowadays an important component
of state-of-the art system integration. But not
only the technical design of these system change
rapidly also the required and realised concepts
are modified. Reasons are the increasing
development and improvements in defence and
communication technology on the one hand and
in user requirements like efficency and user -
friendliness growing with the pretentious tasks
on the other hand.
Nowadays realization of these requirements is
nearly unthinkable without using modern
computers, user-specific software and software
tools. For several reasons - cost efficiency,
modularity, reuseability, standardization - also
COTS products play an important role within
radio monitoring systems.

Modern radio monitoring systems as they are
developed and manufactured by Rohde &
Schwarz consist of numerous components and
subsystems functionally working together.
Components of each systems are computer
hardware and software as well as mainly
computer-controlled special equipment such as
antennas, receivers, analyzers and direction
finders. Mostly they are systems with automated
features and monitoring, analysing and
visualization capability. They contain
distributed, intelligent subsystems for
measurement and location of electromagnetic
emissions working close together within the
system. Also the workflow and tasks on the
entire monitoring process, the flow of
information and the information management

24-3

within the system play an important role when
mapping them into a suitable software.
Measurement results may be stored in data bases
and processed by powerfull computers with
analyzing tools and reporting features.
In the term of radio monitoring all processes of
acquisition, monitoring and surveillance are
included. This comprises also automatic an
unmanned surveillance of known emitters as
well as identification and surveillance of
unknown emitters with an increasing means of
analyzing, post-processing and finally reporting
on the present situation up to the presentation of
tactical situations for the decision process of
military leaders.

3.1. Tasks and possible structure
of a radiomonitoring system

The task of a modern radiomonitoring system
within the complex of electromagnetic emission
is shown simplified in figure 1. Herein tasks and
functions are hierarchically structured from the
process of signal collection (acquisition, search,
monitor, bear and locate emitters), over pre-
analyzing up to the process of command and
control including reporting and processing.

Within the whole signal scenario and
electromagnetic spectrum only a small part of
the emission has to be acquired and monitored
in nearly real time. But exactly this part has to
be monitored and processed very fast. Such a
task may only be solved successfully by support
of computers and modern information
technology.

As in many other systems also in
radiomonitoring systems a lot of functions and
subsystems are working close together and may
only be controlled by powerfull computer hard-
and software. Thereby the operating staff shall
be relieved in routine tasks but also supported in
decisions and preparation of suitable means.

3.2. Operational aspects

To find a possible approach of COTS products
before system design and development an exact
analysis of the users requirement including the
used workflow and operational procedures has
to be done.

I I i 1 1 1 i i 1 1 i i
Electromagnetic emission

Strar ge emission
i

r

i,
Own emission

Acquisition (search, monitor,
bear, locate)

Trar ismit

i

i

r , t
i k

Pre-Analyzing Post-Analyzing

i 1 t i
Control of reconnäisance systems Control of interference systems

^

i

r

i

i

i

r

k

Control of own radio and reconnäisance systems

Figure 1: Task structure within the complex of electomagnetic emission

24-4

Derived from the basic functions of a radio
monitoring system like

many tasks have been automated by powerful 1
computers and special software tools.

Receiving operational orders and translating
into tasks
Spectrum surveillance and supervising of
known emitters and frequencies. Reporting
upon their activity.
Searching, identification and analyzation of
unknown emitters and signals
recording of signals and analysis
emitter location
tactical evaluation and reporting

The following considerations are based on the
possible structure of a modern radiomonitoring
system as shown in figure 2. This system mainly
consists of different sensoric components
(antennas, receivers), signal distribution units,
analyzers, control and data processing units
and system and database servers. For direction
finding and bearing purposes remote DF-sites
may be attached via a modern communication
link.

antenna switching unit

RF

automatic
search

control JUS

I" 1
monitoring

receiver

RF

monitoring
receiver

1
g LAN

I
I

NF-X

IF/NF matrix

audio
recording unit

demodulator,
decoder,

rJflRRifirator

I

demodulator,
decoder,

rJasRificfltnr

I
I

JLNF

digital signal
processing

y///^////////////.^////////////.^////////////.^//////////////^

System
server/

database

Audio
server

Supervisor
console

Figure 2: Possible structure of a modern radio monitoring system

24-5

The signals of interest will be received via the
according antenna and distributed to the dedicated
receivers. Then a split up of the signal onto the
different hardware tools, like demodulators,
decoders and digital signal processors follows.
(The tasks of these subsystems is not part of the
presentation) On any operator console different
tasks, control (analysis and reporting) functions
are realized. The allocation of tasks and
positions/consoles usually may as follows:

Supervisor: Control and tasking of
monitor/search positions and
analyzer positions. Report to
higher authorities as well as
receiving orders from higher
authorities.

Monitoring console:
Signal monitoring and recording
in a certain frequency band,
creating DF requests and
reporting on signals of interest

DF console: Search and location of emitters

Analyzer console:
Analyzing unidentified and
unknown signals, measurement of
signals.

Parts of the system and several operator consoles
may be grouped together or extended according to
the specific function or the requirements.

The software used within the system has to be of
the following kind according to the tasks
mentioned above:

Control software/drivers for specific hardware
Analyzing and evaluation software
Reporting software
GIS and map editing software
Database
Communication software
Translation software.

Recent developments in computer integration and
technology, measurement and control equipment
as well as in COTS products nowadays allows an
extensive grade of automatiion. Thereby
processing speed and efficiency may be increased
in a perceptible way to support the operator's

work. Simultaneously costs for system
development and integration may be cut.

3.3. Functions to be realized

First approaches may be derived from the
functional diagram of a radiomonitoring system.
The usability of common hardware products as
antennas, receivers, computers, network and
infrastructure components are obvious. They have
to be clearly defined and tested for their
integrability.
Furthermore software products have then to cover
the following essential tasks:

control the search process (i.e. a channel wise
search for frequencies controled via frequeny
lists etc. generated by a database referenced
scan orders) by a control of the connected
devices
control of the identification process (i.e.
forwarding an active channel to the
monitoring receivers triggered by certain
events)
system ressource management
generating automatic requests for direction
finding according to pre-defined events
support of signal analysis, demodulation and
decoding (digital signal processing)
automatic reporting on active
channels/frequencies nets etc.
taking over of DF results and visualization on
maps as line of bearing
generating map based status reports.

4. Example for the integration of
COTS products

Since Rohde & Schwarz offers turn-key solutions
for radiomonitoring systems, we have experienced
with several possibilities to bring in COTS
products. Their effective use requires a certain
effort to identify where in the system which
COTS products can be used in a reasonable
relationship to the expense the system integrators
have. Having analyzed the functionality of the
system, the kind of applicable products have to be
defined following a catalogue of criterias for
component selection.
Figure 3 basically gives an overview on the
system components of and the tasks to be done in

24-6

a radio monitoring system in connection with the
information and processes to be handled. We have
used this diagram to make an estimation where
COTS components may be integrated depending
on the grade of specification.
Looking on the process of signal acquisition,
signal processing and analyzing several in-house
and external standard products, like antenna
systems, receiver, DSP's and spectrum-analyzer
fulfill the COTS criteria. They are not specifically
customer-designed but become unique from the
time they will be integrated in a system and have
to serve for specific tasks. From the moment of
adapting these products to specific workflows or
customer processes they have to be controlled by
suitable software.
Mostly results of software controlled
measurements will be the input information for
the following hardware and have to be handed
over to another device via a standard interface and
a standard format.

Specific algorithms are used for demodulation,
decoding or signal analysis. Parts of the
measurement have to be visualized and serve for
operators decision. In this part of the system the
share COTS could have is, from our experience
relatively small. To guarantee an optimum of
integration numerous device drivers and
measurement and control software have to be
adapted to the customers requirements. Many
specific applications resulting out of the
requirements and interfaces to almost existing
software or databases keeping the customers
datasets is a challenge for our system integrators.
The more specific and unique the requirements
are the harder it is to use standard applications and
COTS products. Therefore we decided to use
COTS products only as tools to develop our own
measurement and control software and our own
device drivers. Besides we add COTS products
like GIS software and relational databases to
deliver a system covering all the required
functions.

purposes. One example is reporting software
which is adaptable to standard file formats and
offer a standard interface to many third-party
COTS products like Office software, GIS
applications and relational or desktop databases.
To forward these reports we try to integrate even
standard applications (eMail etc.) running on
standard COTS hardware. From the hardware
perspective also for the interconnection of the
several operator consoles and sites via LAN or
WAN regular network and communication
components can be integrated.

To sum up it can be said that in radio monitoring
systems COTS products are easy to integrate if
the task of that product keeps as common to
standards and as simple as possible. As soon as
the task or part of the system becomes specific or
complex integration and use of COTS products
becomes difficult due to the characteristics of
COTS. Adapting COTS soft- and hardware to the
desired functionality and interfaces of rather
complex systems is often more difficult and
ineffectice than to generate own software in small
edition.

When at the end of the process chain the hardware
and the functions within a radio monitoring
system become more common and the
preprocessing provides more standard format
outputs an integration of COTS products is
simplified.
To generate tactical evaluations and status reports
out of the condensed outputs of the sensoric and
signal processing hardware a set of standard
applications exist which can be used for these

24-7

System t

components

Process

antenna

receiver

DSP

process-
controller

operator
consoles

Signal acquisition
- measurement

control
- search
■ monitor
• locate
• recording

Signal classification
and processing

Deriving of
information

Determination on
methods

Measurement of
signal
parameters

Informatiönpro-
cessing/Analyzing

Correlation with
basic data
Manual evaluation
Condensation
Validation

Identification and
Classification
Reporting and
Creation of map
based reports

acquisition

HFEF

A/D Cony.

digital signal
processing

dig. ZF

demodulation
decoding

signal analyzing
evaluation

•T raw
material

tactical
evaluation

manage-
ment

information

Process Control

control of
sensoric and

equipment

Information Databases External Information

control of DSP

on-line control
of demod/decod

off-line
evaluation

correlation,
reporting editing

external
information
(specifical
knowledge) location,

frequency
time

duration

signal,
tecnical/

operational
knowledge

special signal
knowledge

(modulation,
krypto..)

basics, analysis
profiles, keys,

codes...

SIGINT
background

status
reports

| j_
i processmanagernent

i

information
management

results and
predictions

~H TADB
Technical
Analysis

type of
modulation

patterns

key rows,
codes

-H National
Basics

Profile DB customer

Figure 3: Possible cooperation of system components, processes and information as a basic for COTS
integration possibilities

24-8

5. Experiences in development
and implementation using
COTS products

Taking into account the basic structure of a radio
monitoring system as described in chapter 3, its
operational aspects and the possibilities to bring in
COTS we have identified two different
perspectives to face that challenge. The system
integrator's view is more based on the decision
how and where in the system COTS products may
be integrated in the most cost effective way
whereas the developers view reflects the possible
use of COTS tools and the question how to
generate a COTS product itself to keep the effort
for development and reuse as small as possible.
Common to both views is that COTS products
have certain properties which affect the system
and its functionality and therefore have to be
considered in time.
After a first process of determining the applicable
COTS products the most available ones have to be
chosen following certain selecting criteria.

5.1. Example of using COTS for
software development

When we have recognized the basic useability of
COTS for a customer specific radio monitoring
system we looked for a suitable project to start
with. Within the complexity of measurement
control, monitoring, reporting and evaluation
software we picked out the integration of two
software products. As a result of the process of
integration a new, modular built up software
should be created with a unique kernel and
different, preferebly COTS based modules.

The first software is mainly determined for the
civil client. It is a radio and spectrum monitoring
software package which is used to maintain the
quality of the spectrum by detecting interferences
from licensed and non-licensed users (national
and international) and man-made interferences.
This software is part of the radio monitoring
systems Rohde & Schwarz is building for
different customers like public authorities and
frequency allocation boards.
The relevant rules and recommendations for
spectrum monitoring and spectrum management
and the related software behind are from the

International Telecommunication Union (ITU),
Geneva.

Due to the above mentioned customers as

• broadcast and TV organisations
• ATC (Air Traffic Control) organisations
• frequency regulation authorities

the tasks and features vary from

• long term monitoring of transmitters
• checking of optimal coverage
• providing interference free operations
• getting direction / location of aircrafts /

unwanted emissions
• checking of frequency spectrum
up to
• planning of communication links and

frequencies.

Especially for the non-civil customers like

• defence forces
• security organisations
and
• law enforcement agencies

another radio monitoring software was originally
designed for.

These customers set the focus on tasks like

• searching for known/unknown signals
• monitoring frequencies
• identifying signal sources
• DF and locating signal sources
• getting information about communication

nets as
• station identifiers (call signs / names /

numbers)
• transmission start/stop time
• directions / locations
• signal contents
• technical signal parameters...

• evaluation of monitoring results and
reporting.

The aim behind the development was to build a
product which offers the common features of both
applications and provides enough modularity to
cover the civil and military market with additional
specific extensions.

24-9

By creating own off-the-shelf modules, reducing
production and delivery time, overlaying an
expandable strategy and designing for stationary,
(semi)mobile and network use, the product should
have enough flexibility to serve also a wide band
client.

5.2. Defining the requirements

A first step to transform the idea into a practicable
solution was to define the basic requirements and
to specify the key features as

• use of a flexible and modular concept which
allows easy adaption to new operational
procedures

• separation of functionality and desktop
• definition of external interfaces
• easy installation and maintain
• keeping low development costs and time.

The functional and operational requirements were
gathered in a very high level of abstraction and
should help us to define the context in which the
software will be used and the major functions that
it will provide.

The fundamential architecture behind should keep
close to a layer based model and contain clearly
defined interfaces to relational or desktop
databases, networks, devices and users (MMI).
Besides it should reflect the major requirements
within functionally grouped subsystems and
modules.

5.3. Setting up the phases

Once selected the suitable COTS tools we started
to divide the process into several phases according
to common rules for software development:

• Analysis phase (by using use cases to capture
the customers requirements and transform
them into software functions)

• Design phase (using class diagrams)
• Implementation phase (code generation with

C++, verification and validation)
• Test phase (module, subsystem and interface

testing using specific test tools).

5.4. The experiences

The first phase of prototype implementation
consists of building a basic subsystem as a
functional kernel covering the different
customers' requirements. Specific add-ons should
allow us to customize the software due to the
specific demands.

Military

add-on
Driver

kernel
Driver Civil

add-
on

Customer
specific add-

| on

i

f

Customer i
specific add- i

on]
i

t 1 J
; third party software (GIS, RDBMS, report tools...)

Within that subsystem we started with a standard
device driver module for receiver control with
interfaces to hardware and GUI components and a
LAN based audio recording/playback module
with interfaces to a COTS database.
With the use of standard products like Use Cases,
class libraries, standard software development
tools and according to object oriented software
development standards we tried to build a first
prototype. It should provide a basic functionality
and contain almost sufficient functionality to
interact with the according hardware devices
within the radio monitoring system.

Already during the phases of development
experiences described in other publications [1,2]
could be confirmed. A lot of properties of COTS
supported software development and integration
of COTS components became obvious. Most of
the experiences we dealt with concern the
interface between own modules and source code
and COTS components.

Because of the fast evolution of COTS products a
clearly defined interface is absolutely necessary.
The architecture of the generated software must
allow an isolation of COTS products. Otherwise
an expansion of the final product or a complete
substitution of COTS parts is nearly impossible.
One of the main problem we had to deal with was
the near real time processing of audio data within
the network. Due to the different requirements of
the customer to the system performance we had to

24-10

try several versions of drivers to reduce the delay
time to a minimum.
Furthermore clearly defined and possibly standard
interfaces makes developers and finally customers
independent from proprietery COTS products. As
an example we used class libraries from
Roughware for Windows NT ™ and Unix systems
to be open for different operation platforms and to
reduce the development process for both systems.
SQL and ODBC interfaces allow access and data
transfer from/to external databases such as Oracle
or MS Access. The use of customer specific data
may be guaranteed.
Of essential importance was the test of the used
and generated modules with test tools.

Derived from these experiences we figured out the
major steps to follow when using COTS
components in our radio monitoring systems.
The qualification process starts with identifying
the properties of a component and its qualification
for the intended requirement. This includes items
as functionality, use of standard interfaces,
reliability and exchangeability in case of adaption
to changed requirements etc.. Especially for the
process of development the testing and reusing is
another major factor for the use of tools and
components as part of a whole.
But nevertheless also external dependencies
played an important role when we decided for
certain COTS components. Because of the
frequently update process of COTS, integrators
have to face additional risks when using these
products. Due to the life cycle of our products a
simple update of a single component like an
upgrade of a new data base version is realistic.
But this may have other effects within the whole
system and result in malfunctions especially in
time- and data-critical applications.

Through the process of assembling COTS into our
own software we have seen that the interface and
data exchange structure is almost important. This
may influence the portability and interoperability
of the system. Here some styles cristallized like:

• The object oriented style in which Broker
provides mechanism for object location and
activation.

Considering the characteristic customer who
already has long grown centralized data like
frequency or operational data bases we
concentrated on the first style.

From the aspect of exchangeability we had to be
careful with the simplistic view of upgrading and
replacing components during the phase of
development and integration. Replacement of
components often was a very difficult and time-
consuming process due to the mostly non-
identical successors, different behaviour and
resulting test phase.

As a result of our COTS experiences we have
recognized that a structured planning and
definition of the use of COTS and its purpose in
the system makes the whole process of
development and integration easier. Besides the
questions for qualification, reuse, functionality
and interoperability also long term considerations
and usage play an important role.

The costs often considered as one main factor for
using low price COTS instead of own products is
on the second view not as significant as it was
originally. During the implememtation of the first
systems additional costs for customer training,
maintenance, licensing and error tracking and
correction occured. This reduces the price
advantage of COTS products often to a minimum.

The centralized style which is based on a
common database and shares information via
this information pool.
The message handling style in which each
component has its own data store and data
transfer is coordinated by messages or
procedure calls of the components.

24-11

6. Conclusion

A lot of properties of COTS supported software
development and integration of COTS
components became obvious during our software
project. As a conclusion the experiences are
summed up thematically grouped from integration
via coding to maintenance and testing.

Integrability:

• When integrating COTS products a reasonable
relation between effort of integration and
adaption of own products and the requirements
one wants to cover with COTS must exist
(unfortunately this is not foreseeable when
starting the development and deciding for a
product).

• Furthermore clearly defined and possibly
standard interfaces makes developers and finally
customers independent from proprietery COTS
products. As an example we used class libraries
from Roughware for Windows NT ™ and Unix
systems to be open for different operation
platforms and to reduce the development process
for both systems. SQL and ODBC interfaces
allow access and data transfer from/to external
databases such as Oracle or MS Access. The use
of customer specific data may be guaranteed.

• Because of the fast evolution of COTS products
seperability is absolutely necessary at each time.
The architecture of the generated software must
allow an isolation of COTS products. Otherwise
an expansion of the final product or a complete
substitution of COTS parts is nearly impossible.

Coding:

• Because of the evolution process of COTS the
market requires, the own coding effort has to be
aware of this evolution and to watch for new
version and releases which could suddenly
become interoperable with the code the devloper
has written yet.

• COTS components affect the functionality of the
whole software for instance in time-critical
applications (essentially when time errors occur
while one device or module is waiting for data
of another application).

• Once the system integrator has decided to use a
certain COTS product, a necessary upgrade of
own products has to wait unless also the COTS
product will be upgraded too. This reduces the
evaluation process of the own product.

But we also made the positive experience that
several tools support the development process and
COTS may extend the functionality of the own
product by extending its possibility (like
evaluation, map processing and GIS software)

Maintenance and testing:

• Because of the fast evolution of COTS software
a maintenace is rather difficult and the system
integrator has to keep enough qualified personal
on hand to be able to integrate and use the
current version.

• Furthermore a configuration management is
absolutely necessary to cover all releases

• Integrators and developers should use
appropriate test tools during the development to
guarantee the interoperability to their piece of
software at any time.

References

[1] Dr. M.R. Vidger and J. Dean
An Architectural Approach to Building
Systems from COTS Software
Components.
NRC Report Number 40221

[2] Dr. M.R. Vidger and J. Dean
System Implementation Using
Commercial Off-The-Shelf (COTS)
Software.
NRC Report Number 40173

[3] R. Grabau
Technische Aufklärung.
Franckh'sche Verölagshandlung, Stuttgart

[4] Dr. U. Ullrich
Systemtechnik für die Funküberwachung
und Funkaufklärung.
In Neues von Rohde & Schwarz special,
Seite 32-38.

REPORT DOCUMENTATION PAGE

1. Recipient’s Reference 2. Originator’s References 3. Further Reference 4. Security Classification
of Document

RTO-MP-048 ISBN 92-837-1049-5 UNCLASSIFIED/
AC/323(IST)TP/7 UNLIMITED

5. Originator Research and Technology Organization
North Atlantic Treaty Organization
BP 25, 7 rue Ancelle, F-92201 Neuilly-sur-Seine Cedex, France

6. Title
Commercial Off-the-Shelf Products in Defence Applications “The Ruthless Pursuit of
COTS”

7. Presented at/sponsored by

the Information Systems Technology Panel (IST) Symposium held in Brussels,
Belgium, 3-5 April 2000.

8. Author(s)/Editor(s) 9. Date

Multiple December 2000

10. Author’s/Editor’s Address 11. Pages

Multiple 210

12. Distribution Statement There are no restrictions on the distribution of this document.
Information about the availability of this and other RTO
unclassified publications is given on the back cover.

13. Keywords/Descriptors

COTS (Commercial Off-The-Shelf) Evaluation Adaptation
Computer systems programs Safety Standards
Computer systems hardware Reliability Interoperability
Software management Procurement Integrated systems
Software maintenance Design Upgrading
Life cycle costs Tests Obsolescence
Military applications Verifying Sustainability
Quality assurance Proving

14. Abstract

This volume contains 24 unlimited papers and 2 Keynote Addresses presented at the
Information Systems Technology Panel Symposium held in Brussels, Belgium, 3-5 April 2000.

The papers were presented under the following headings:
• Academic Perspective: COTS Acquisition, Utilisation and Evaluation
• COTS Acquisition Challenges
• COTS: Evaluation and Assurance
• Vendor Perspective: COTS
• User Perspective: COTS
• COTS: Integration

NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25 • 7 RUE ANCELLE DIFFUSION DES PUBLICATIONS

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE RTO NON CLASSIFIEES

Télécopie 0(1)55.61.22.99 • E-mail mailbox@rta.nato.int

L’Organisation pour la recherche et la technologie de l’OTAN (RTO), détient un stock limité de certaines de ses publications récentes, ainsi
que de celles de l’ancien AGARD (Groupe consultatif pour la recherche et les réalisations aérospatiales de l’OTAN). Celles-ci pourront
éventuellement être obtenues sous forme de copie papier. Pour de plus amples renseignements concernant l’achat de ces ouvrages,
adressez-vous par lettre ou par télécopie à l’adresse indiquée ci-dessus. Veuillez ne pas téléphoner.

Des exemplaires supplémentaires peuvent parfois être obtenus auprès des centres nationaux de distribution indiqués ci-dessous. Si vous
souhaitez recevoir toutes les publications de la RTO, ou simplement celles qui concernent certains Panels, vous pouvez demander d’être
inclus sur la liste d’envoi de l’un de ces centres.

Les publications de la RTO et de l’AGARD sont en vente auprès des agences de vente indiquées ci-dessous, sous forme de photocopie ou
de microfiche. Certains originaux peuvent également être obtenus auprès de CASI.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE FRANCE PAYS-BAS
Streitkräfteamt / Abteilung III O.N.E.R.A. (ISP) NDRCC
Fachinformationszentrum der 29, Avenue de la Division Leclerc DGM/DWOO
Bundeswehr, (FIZBw) BP 72, 92322 Châtillon Cedex P.O. Box 20701

Friedrich-Ebert-Allee 34 2500 ES Den Haag
GRECE (Correspondant)D-53113 Bonn

Hellenic Ministry of National POLOGNE
BELGIQUE Defence Chief of International Cooperation

Coordinateur RTO - VSL/RTO Defence Industry Research & Division
Etat-Major de la Force Aérienne Technology General Directorate Research & Development Department
Quartier Reine Elisabeth Technological R&D Directorate 218 Niepodleglosci Av.
Rue d’Evère, B-1140 Bruxelles D.Soutsou 40, GR-11521, Athens 00-911 Warsaw

HONGRIECANADA PORTUGAL
Department for ScientificDirecteur - Recherche et développement - Estado Maior da Força Aérea

AnalysisCommunications et gestion de SDFA - Centro de Documentação
Institute of Military Technologyl’information - DRDCGI 3 Alfragide
Ministry of DefenceMinistère de la Défense nationale P-2720 Amadora
H-1525 Budapest P O Box 26Ottawa, Ontario K1A 0K2

REPUBLIQUE TCHEQUE
ISLANDEDANEMARK Distribuc∨nı́ a informac∨nı́ str∨edisko R&T

Director of AviationDanish Defence Research Establishment VTÚL a PVO Praha
c/o FlugradRyvangs Allé 1, P.O. Box 2715 Mladoboleslavská ul.
ReykjavikDK-2100 Copenhagen Ø 197 06 Praha 9-Kbely AFB

ITALIEESPAGNE ROYAUME-UNI
Centro di DocumentazioneINTA (RTO/AGARD Publications) Defence Research Information Centre

Tecnico-Scientifica della DifesaCarretera de Torrejón a Ajalvir, Pk.4 Kentigern House
Via XX Settembre 123a28850 Torrejón de Ardoz - Madrid 65 Brown Street
00187 Roma Glasgow G2 8EX

ETATS-UNIS
LUXEMBOURGNASA Center for AeroSpace TURQUIE

Voir BelgiqueInformation (CASI) Millı̂ Savunma Bas,kanli i (MSB)
Parkway Center ARGE Dairesi Bas,kanli i (MSB)NORVEGE
7121 Standard Drive 06650 Bakanliklar - AnkaraNorwegian Defence Research
Hanover, MD 21076-1320 Establishment

Attn: Biblioteket
P.O. Box 25, NO-2007 Kjeller

AGENCES DE VENTE

NASA Center for AeroSpace The British Library Document Canada Institute for Scientific and
Information (CASI) Supply Centre Technical Information (CISTI)

Parkway Center Boston Spa, Wetherby National Research Council
7121 Standard Drive West Yorkshire LS23 7BQ Document Delivery
Hanover, MD 21076-1320 Royaume-Uni Montreal Road, Building M-55
Etats-Unis Ottawa K1A 0S2, Canada

Les demandes de documents RTO ou AGARD doivent comporter la dénomination “RTO” ou “AGARD” selon le cas, suivie du
numéro de série (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont
souhaitables. Des références bibliographiques complètes ainsi que des résumés des publications RTO et AGARD figurent dans les
journaux suivants:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR peut être consulté en ligne au localisateur de publié par le National Technical Information Service
ressources uniformes (URL) suivant: Springfield

http://www.sti.nasa.gov/Pubs/star/Star.html Virginia 2216
STAR est édité par CASI dans le cadre du programme Etats-Unis
NASA d’information scientifique et technique (STI) (accessible également en mode interactif dans la base de

données bibliographiques en ligne du NTIS, et sur CD-ROM)STI Program Office, MS 157A
NASA Langley Research Center
Hampton, Virginia 23681-0001
Etats-Unis

Imprimé par St-Joseph Ottawa/Hull
(Membre de la Corporation St-Joseph)

45, boul. Sacré-Cœur, Hull (Québec), Canada J8X 1C6

NORTH ATLANTIC TREATY ORGANIZATION

RESEARCH AND TECHNOLOGY ORGANIZATION

BP 25 • 7 RUE ANCELLE DISTRIBUTION OF UNCLASSIFIED

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE RTO PUBLICATIONS

Telefax 0(1)55.61.22.99 • E-mail mailbox@rta.nato.int

NATO’s Research and Technology Organization (RTO) holds limited quantities of some of its recent publications and those of the former
AGARD (Advisory Group for Aerospace Research & Development of NATO), and these may be available for purchase in hard copy form.
For more information, write or send a telefax to the address given above. Please do not telephone.

Further copies are sometimes available from the National Distribution Centres listed below. If you wish to receive all RTO publications, or
just those relating to one or more specific RTO Panels, they may be willing to include you (or your organisation) in their distribution.

RTO and AGARD publications may be purchased from the Sales Agencies listed below, in photocopy or microfiche form. Original copies
of some publications may be available from CASI.

NATIONAL DISTRIBUTION CENTRES

BELGIUM GREECE (Point of Contact) POLAND
Coordinateur RTO - VSL/RTO Hellenic Ministry of National Chief of International Cooperation
Etat-Major de la Force Aérienne Defence Division
Quartier Reine Elisabeth Defence Industry Research & Research & Development
Rue d’Evère, B-1140 Bruxelles Technology General Directorate Department

Technological R&D Directorate 218 Niepodleglosci Av.
CANADA D.Soutsou 40, GR-11521, Athens 00-911 Warsaw

Director Research & Development
Communications & Information HUNGARY PORTUGAL
Management - DRDCIM 3 Department for Scientific Estado Maior da Força Aérea

Dept of National Defence Analysis SDFA - Centro de Documentação
Ottawa, Ontario K1A 0K2 Institute of Military Technology Alfragide

Ministry of Defence P-2720 Amadora
CZECH REPUBLIC H-1525 Budapest P O Box 26

SPAINDistribuc∨nı́ a informac∨nı́ str∨edisko R&T
ICELAND INTA (RTO/AGARD Publications)VTÚL a PVO Praha

Director of Aviation Carretera de Torrejón a Ajalvir, Pk.4Mladoboleslavská ul.
c/o Flugrad 28850 Torrejón de Ardoz - Madrid197 06 Praha 9-Kbely AFB
Reykjavik

TURKEYDENMARK
ITALY Millı̂ Savunma Bas,kanli i (MSB)Danish Defence Research

Centro di DocumentazioneEstablishment ARGE Dairesi Bas,kanli i (MSB)
Tecnico-Scientifica della DifesaRyvangs Allé 1, P.O. Box 2715 06650 Bakanliklar - Ankara

Via XX Settembre 123aDK-2100 Copenhagen Ø
UNITED KINGDOM00187 Roma

FRANCE Defence Research Information
LUXEMBOURGO.N.E.R.A. (ISP) Centre

See Belgium29 Avenue de la Division Leclerc Kentigern House
BP 72, 92322 Châtillon Cedex 65 Brown Street

NETHERLANDS Glasgow G2 8EX
NDRCCGERMANY
DGM/DWOOStreitkräfteamt / Abteilung III UNITED STATES
P.O. Box 20701Fachinformationszentrum der NASA Center for AeroSpace
2500 ES Den HaagBundeswehr, (FIZBw) Information (CASI)

Friedrich-Ebert-Allee 34 Parkway Center
NORWAYD-53113 Bonn 7121 Standard Drive

Norwegian Defence Research Hanover, MD 21076-1320
Establishment

Attn: Biblioteket
P.O. Box 25, NO-2007 Kjeller

SALES AGENCIES
NASA Center for AeroSpace The British Library Document Canada Institute for Scientific and

Information (CASI) Supply Centre Technical Information (CISTI)
Parkway Center Boston Spa, Wetherby National Research Council
7121 Standard Drive West Yorkshire LS23 7BQ Document Delivery
Hanover, MD 21076-1320 United Kingdom Montreal Road, Building M-55
United States Ottawa K1A 0S2, Canada
Requests for RTO or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial
number (for example AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical
references and abstracts of RTO and AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR is available on-line at the following uniform published by the National Technical Information Service
resource locator: Springfield

http://www.sti.nasa.gov/Pubs/star/Star.html Virginia 22161
STAR is published by CASI for the NASA Scientific United States
and Technical Information (STI) Program (also available online in the NTIS Bibliographic
STI Program Office, MS 157A Database or on CD-ROM)
NASA Langley Research Center
Hampton, Virginia 23681-0001
United States

Printed by St. Joseph Ottawa/Hull
(A St. Joseph Corporation Company)

45 Sacré-Cœur Blvd., Hull (Québec), Canada J8X 1C6

ISBN 92-837-1049-5

	Cover
	RDP
	Table of Contents
	Papers 1-9
	Papers 10-24

	edoc_982006035.sf298.pdf
	Form SF298 Citation Data

	TOC info: Click inside the blue boxes or on the titles to view the corresponding section
	Copy A: Single copies of this publication or of a part of it may be made for individual use only. The approval of the RTA Information Policy Executive is required for more than one copy to be made or an extract included in another publication. Requests to do so should be sent to the address above.
	Copy 1: © RTO/NATO 2000

